论文部分内容阅读
机器学习常常面临数据稀疏和数据噪音问题.根据认知的相对性规律提出了相对变换方法,证明了相对变换是非线性的放大变换,可提高数据之间的可区分性.同时在一定条件下相对变换还能抑制噪音,并使稀疏的数据变得相对密集.通过相对变换将数据的原始空间变换到相对空间后,在相对空间中度量数据的相似性或距离更加符合人们的直觉,从而提高机器学习的性能.理论分析和实践验证了所提方法的普适性和有效性.