论文部分内容阅读
针对粒子群优化(particle swarm optimization,PSO)算法收敛速度慢、寻优精度低、计算量大、容易陷入局部最优解等问题,首先提出了一种无需越界检测的归一化粒子群优化(normalized particle swarm optimization,NPSO)算法,NPSO算法具有比PSO算法更佳的有效性和稳定性,其优化速度和收敛精度要远远优于PSO算法,且其计算量要比常规PSO算法采用越界检测调整小。其次,结合狼群算法(wolfpackalgorithm,WPA)中的游走行为,在二分粒