论文部分内容阅读
A theoretical treatment of the scattering of anti-plane shear (SH) waves is provided by a single crack in an unbounded transversely isotropic electro-magneto-elastic medium. Based on the differential equations of equilibrium, electric displacement and magnetic induction intensity differential equations, the governing equations for SH waves were obtained. By means of a linear transform, the governing equations were reduced to one Helmholtz and two Laplace equations. The Cauchy singular integral equations were gained by making use of Fourier transform and adopting electro-magneto impermeable boundary conditions. The closed form expression for the resulting stress intensity factor at the crack was achieved by solving the appropriate singular integral equations using Chebyshev polynomial. Typical examples are provided to show the loading frequency upon the local stress fields around the crack tips. The study reveals the importance of the electromagneto-mechanical coupling terms upon the resulting dynamic stress intensity factor.