论文部分内容阅读
在分析C4.5算法原理的基础上,进一步讨论了C4.5算法在决策树的规模控制、属性选择、滤躁和去除不相关属性等方面的不足,讨论了决策树挖掘中对训练数据进行属性约简的必要性。从实用的角度提出了一种利用遗传算法进行寻优的、基于属性约简的决策树构建模型,并为此模型设计了一个适应度函数。该模型具有自适应的特点,通过调整适应度函数的参数,可以约束遗传算法的寻优方向,实现对决策树的优化。实验表明,决策树寻优后,在所用训练集属性减少的同时,分类精度却有一定程度的提高.而分类规则的规模却降低了.因此,该模型具有一定的实用价