【摘 要】
:
燃料包壳是核反应堆安全运行的重要保障.福岛核事故后,国内外开展了大量新型事故容错燃料包壳的研发工作.由于具有抗高温氧化和高强度等优异的综合性能,FeCrAl合金已成为新一代事故容错燃料包壳的重要候选材料之一.经过多年积累,核燃料包壳FeCrAl合金的设计和制备研究已取得一定进展.利用粉末冶金方法制备性能更为优异的氧化物弥散强化FeCrAl合金前景广阔,受到国内外学者的广泛关注.本文综述了核燃料包壳FeCrAl合金的成分设计、熔炼制备和粉末冶金制备的研究现状,分析了不同方法制备合金的组织性能及存在的问题,对
【机 构】
:
苏州热工研究院有限公司,苏州 215004
论文部分内容阅读
燃料包壳是核反应堆安全运行的重要保障.福岛核事故后,国内外开展了大量新型事故容错燃料包壳的研发工作.由于具有抗高温氧化和高强度等优异的综合性能,FeCrAl合金已成为新一代事故容错燃料包壳的重要候选材料之一.经过多年积累,核燃料包壳FeCrAl合金的设计和制备研究已取得一定进展.利用粉末冶金方法制备性能更为优异的氧化物弥散强化FeCrAl合金前景广阔,受到国内外学者的广泛关注.本文综述了核燃料包壳FeCrAl合金的成分设计、熔炼制备和粉末冶金制备的研究现状,分析了不同方法制备合金的组织性能及存在的问题,对未来核燃料包壳FeCrAl合金的设计和制备进行了展望.
其他文献
为研究玄武岩纤维增强树脂基复合材料(Basalt fiber reinforced polymer,BFRP)筋的低速冲击性能,通过落锤冲击试验测试了不同预拉力比值(2%、10%、20%和30%)和不同能量(12.76-31.90J)作用下BFRP筋的低速冲击响应,同时测试了未完全断裂试件的残余拉伸承载力.结果 表明:BFRP筋的损伤破坏模式包括冲击面树脂破碎、部分纤维断裂和BFRP筋完全断裂.在冲击能量为19.14 J,预拉力从2%增大到10%和20%时,BFRP筋的破坏模式从冲击面树脂破碎转变为部分纤
为解决海洋工程中钢筋耐久性不足以及海上建筑材料短缺问题,提出了一种新型玻璃纤维增强树脂复合材料(GFRP)筋珊瑚海洋混凝土柱.对28个海洋潮汐区混凝土柱试件进行轴压静力加载试验,观察了受力破坏过程,获取了荷载-位移全过程曲线和特征点应力应变数据,分析了试件的受压破损机制及各参数对轴压力学性能的影响规律,并探讨了潮汐区该类新型构件的承载力计算方法.结果 表明:GFRP筋珊瑚海洋混凝土柱的轴压破坏表现为表面裂缝宽而疏,粗骨料断裂,保护层混凝土被分割成条带状;与配钢筋试件相比,GFRP筋试件的承载力降低了38%
针对传统复合材料夹芯结构抗冲击性能差的缺陷,提出一种格栅-蜂窝混式芯体,并对其低速冲击性能进行了研究.采用半球头式落锤冲击实验平台对碳纤维铝蜂窝夹芯结构的低速冲击响应进行研究;其次基于蜂窝非线性本构与完美界面假设,建立了碳纤维铝蜂窝夹芯板低速冲击仿真模型,实验与仿真结果吻合良好;最后对不同冲击位置和冲击角度下格栅-蜂窝混式芯体夹芯板的破坏模态及力学响应进行研究.结果 表明:不同冲击位置及不同角度冲击下结构损伤模态及吸能模式存在巨大差异;格栅-蜂窝混式芯体可以显著提高结构的抗低速冲击性能,对于冲击损伤具有良
采用碳纤维增强树脂复合材料(CFRP)对悬架控制臂进行轻量化设计,为了充分发挥CFRP优异的力学性能,对CFRP控制臂进行多目标铺层优化.基于CFRP力学性能试验结果构建控制臂有限元模型,并通过有限元仿真对比分析钢质控制臂和CFRP控制臂结构性能.综合考虑质量、模态频率、刚度和强度等性能,基于正交试验设计方法,并结合灰色关联分析和主成分分析,对CFRP控制臂铺层参数进行多目标优化,确定最优铺层方案.结果 表明,相比于原钢质控制臂,除纵向刚度略有下降外,CFRP控制臂其余结构性能指标均有所改善,并且质量降低
提供了一种分析全复合材料格栅/波纹夹芯板屈曲特性的解析模型.将格栅、波纹芯子视为连续性单层,基于精确板理论推导了全复合材料波纹/格栅夹芯板的内力-应变关系;在考虑复合材料芯子壁板各向异性和横向剪切变形的基础上,基于均质化理论分别推导了复合材料正交格栅和梯形波纹芯子的等效弹性常数;利用最小势能原理得到了全复合材料格栅/波纹夹芯板屈曲平衡微分方程,求解了3种边界条件下的屈曲临界载荷,解析计算的结果与有限元仿真结果进行对比的误差在5%以内,验证了解析模型的正确性和有效性.基于验证过的模型对比分析了铺层角度、铺层
基于新修正偶应力理论,提出复合材料增强型Reddy层合板热尺度效应模型.该模型只含有一个材料长度参数l,同时将首次引入厚度方向的旋转变量.通过虚功原理推导出平衡方程,并且利用纳维方法,分析热载作用下细观复合材料层合/夹层方板的位移和应力.数值计算表明:该模型能够很好地捕捉板的热尺度效应,随着材料长度参数增大,板的热尺度效应就会增强,另外随着板的跨厚比增加,板的热尺度效应会减弱,但减弱程度会下降.
考虑复合材料层合板中每层体积分数空间不确定性的影响,采用指数型自相关函数模拟每层体积分数同空间位置的依赖关系,结合伽辽金-里兹正交多项式逼近和K-L展开方法,研究了体积分数随机场的自相关长度特征对材料属性随机场离散精度的影响;进而通过体积分数随机场作用下复合材料层合板的随机有限元模型,研究了T300碳纤维/QY8911环氧树脂复合材料垂尾蒙皮结构的固有频率均值、标准差和变异系数与层合板层数之间的关系,基于Monte-Carlo模拟方法验证了采用本文方法开展复合材料层合板固有振动特性分析的有效性.数值结果表
为解决常规定温超固相线液相烧结出现的烧结温度窗口狭窄和产品力学性能对烧结温度波动敏感的问题,采用变温超固相线液相烧结工艺制备了粉末冶金高铬铸铁,研究了变温超固相线液相烧结的高温阶段工艺参数对15Cr系高铬铸铁显微组织和力学性能的影响,并与定温超固相线液相烧结制备的合金进行了对比.研究发现,变温超固相线液相烧结制备的合金由M7C3型碳化物、马氏体及少量奥氏体组成,通过高、低温两个阶段的烧结能够实现高效致密化和对显微组织的有效调控,制备出相对密度超过98.96%的高性能合金材料,烧结温度窗口相较于定温超固相线
利用粉末冶金方法制备了含不同质量分数铜铁预合金粉末的铜基摩擦材料,并在不同温度下对材料摩擦性能进行测试.结果表明:铜铁预合金粉末的引入使得铁元素在烧结后铜基体中及铜基体与其他组元界面处析出,阻碍了烧结,导致材料密度下降.存在于界面处的铁以及反应生成的珠光体成为硬质强化相,使得材料的磨损机理从纯铜基体时的黏着磨损向添加铜铁预合金粉末之后的磨粒磨损转变,导致摩擦系数先下降后上升.200~250℃为摩擦系数保持稳定的临界温度.当超过临界温度时,摩擦表面铜软化,其自润滑作用使得摩擦系数下降.含30%铜铁预合金粉末
采用氟盐反应法制备TiB2/Al复合材料铸锭,并以此为原料利用高压气体雾化制粉技术制备TiB2/Al复合材料粉末.利用金相显微镜、扫描电子显微镜、X射线衍射仪、粒度分布仪等手段对所制备铸锭和粉末的组织及性能进行了表征.结果表明:Al熔体中TiB2的溶度积远小于TiAl3和AlB2的溶度积,TiB2自Al熔体中沉淀析出导致的体系Gibbs自由能变化量比TiAl3或AlB2自Al熔体中沉淀析出导致的体系Gibbs自由能变化量的值更小.TiB2/Al复合材料铸锭及粉末均主要由α-Al相和TiB2相组成.气体雾化