论文部分内容阅读
针对光照、眼镜等对驾驶员人眼检测的影响,提出采用霍夫变换和神经网络分类器进行人眼检测.通过应用虹膜几何信息和对称性,选择可能包含人眼的两个候选区域.运用边缘检测算子和MAE进行人眼粗定位.然后在此基础上采用B-P神经网络进行人眼精确定位.针对三种不同情况,即不同光照、不同背景和不同肤色的人拍摄6组视频图像,采用matlab7.0进行3组仿真实验,实验结果表明该算法对复杂情况的人眼检测具有较强的鲁棒性.大大提高人眼检测准确率.