论文部分内容阅读
在图像搜索的场景中,由于搜索请求的随机性,为了提高搜索速度,搜索算法运行时需要把整个数据集预先载入到运行内存。由于运行内存价格远高于同容量的硬盘价格,降低运行内存自然可以大大降低图像搜索服务的成本,但如果直接对数据进行压缩,往往会极大地损失搜索精度。在这种情况下,文中提出了一种基于图像内容特征的分块式图像搜索框架。先利用神经网络的方法来预先提取图片特征,在不对特征进行量化压缩的前提下,采用一种启发式的聚类方法对数据进行分块,同时保证每个数据块的数据之间有一定的相似性。对于每个数据块,采用基于图结构的