论文部分内容阅读
Tensor decomposition is an important research area with numerous applications in data mining and computational neuroscience.An important class of tensor decomposition is sum-of-squares (SOS) tensor decomposition.SOS tensor decomposition has a close connection with SOS polynomials,and SOS polynomials are very important in polynomial theory and polynomial optimization.In this paper,we give a detailed survey on recent advances of high-order SOS tensors and their applications.It first shows that several classes of symmetric structured tensors available in the literature have SOS decomposition in the even order symmetric case.Then,the SOS-rank for tensors with SOS decomposition and the SOS-width for SOS tensor cones are established.Further,a sharper explicit upper bound of the SOS-rank for tensors with bounded exponent is provided,and the exact SOS-width for the cone consists of all such tensors with SOS decomposition is identified.Some potential research directions in the future are also listed in this paper.