论文部分内容阅读
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning.The signal matrix is calculated through the SVD(Singular Value Decomposition) of the observation matrix.The observation matrix in the sparse mathematical model is replaced by the signal matrix,and a new concise sparse mathematical model is obtained,which means not only the scale of the localization problem but also the noise level is reduced;then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS(Compressive Sensing) method and MUSIC(Multiple Signal Classification) method.The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots,and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large,which will be proved in this paper.
The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered. A matched field localization algorithm based on CS-MUSIC (Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning. The signal matrix is calculated through the SVD (Singular Value Decomposition) of the observation matrix. The observation matrix in the sparse mathematical model is replaced by the signal matrix, and a new concise sparse mathematical model is obtained, which means not only the scale of the localization problem but also the noise level is reduced; then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS (Compressive Sensing) method and MUSIC (Multiple Signal Classification) method. algorithm proposed in this paper can overcome effectively the difficult caused by correlated sources and shortness of snapshots, and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large, which will be proved in this paper.