论文部分内容阅读
The detection of a missile target in heavy sea clutter is a significantly challenging problem due to the clutter effects. In this paper, the radar cross sections(RCS) of a pre-assumed generic missile model is computed with multilevel fast multi-pole algorithm(MLFMA), while the RCS of ocean surface is computed by a more reduced form of the fractional Weierstrass scattering model proposed here. At last, the computed RCS of missile model is compared with that of sea surface, and then the comparisons of missile-to-ocean RCS ratios of different incident angles, incident frequencies, and polarization patterns are also presented. The discussion and comparisons of RCS of the missile and ocean surface can help us to plan and design a radar system in the application of detection of a missile target or other analogous weaker targets in the strong sea clutter background.
The detection of a missile target in heavy sea clutter is a significantly solved problem due to the clutter effects. In this paper, the radar cross sections (RCS) of a pre-assumed generic missile model is computed with multilevel fast multi-pole algorithm ( MLFMA) while the RCS of ocean surface is computed by a more reduced form of the fractional Weierstrass scattering model proposed here. At last, the computed RCS of missile model is compared with that of sea surface, and then the comparisons of missile-to -ocean RCS ratios of different incident angles, incident frequencies, and polarization patterns are also presented. The discussion and comparisons of RCS of the missile and ocean surface can help us to plan and design a radar system in the application of detection of a missile target or other analogous weaker targets in the strong sea clutter background.