论文部分内容阅读
Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere,including methane,which is significant to the global carbon cycling and climate change.Four hydrocarbon seep areas,the Lingtou Promontory,the Yinggehai Rivulet mouth,the Yazhou Bay and the Nanshan Promontory,occurring in the Yinggehai Basin delineate a near-shore gas bubble zone.The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory.The gas composition of the venting bubbles is mainly composed of CO_2,CH_4,N_2 and O_2,with minor amounts of non-methane hydrocarbons.The difference in the bubbles’ composition is a possible consequence of gas exchange during bubble ascent.The seepage gases from the seafloor are characterized by a high CO_2 content(67.35%) and relatively positive δ~(13)C_(V_PDB) values(-0.49×10~(-3)-0.86×10~(-3)),indicating that the CO_2 is of inorganic origin.The relatively low CH_4 content(23%) and their negative δ~(13)C_(V-PDB) values(-34.43×10~(-3)--37.53×10~(-3)) and high ratios of C_1 content to C_(1-5) one(0.98-0.99)as well point to thermogenic gases.The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No.1 fault,suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin.
Natural hydrocarbon seeps in a marine environment are one of the important contributors to greenhouse gases in the atmosphere, including methane, which is significant to the global carbon cycling and climate change. Flow hydrocarbon seep areas, the Lingtou Promontory, the Yinggehai Rivulet mouth, the Yazhou Bay and the Nanshan Promontory, occurring in the Yinggehai Basin delineate a near-shore gas bubble zone. The gas composition and geochemistry of venting bubbles and the spatial distribution of hydrocarbon seeps are surveyed on the near-shore Lingtou Promontory. The gas composition of the venting bubbles are mainly composed of CO_2, CH_4, N_2 and O_2, with minor amounts of non-methane hydrocarbons. The difference in the bubbles’ composition is a possible consequence of gas exchange during bubble ascent. The seepage gases from the seafloor are characterized by a high CO 2 content (67.35%) and relatively positive δ ~ (13) C_ (V_PDB) values (-0.49 × 10 -3 -0.86 × 10 -3) (-34.43 × 10 -3 - 37.53 × 10 -3) and high ratios of C_1 content to C_ (1-5) one (0.98-0.99) as well point to thermogenic gases. The hydrocarbon seeps on the 3.5 Hz sub-bottom profile display a linear arrangement and are sub-parallel to the No. 1 fault , suggesting that the hydrocarbon seeps may be associated with fracture activity or weak zones and that the seepage gases migrate laterally from the central depression of the Yinggehai Basin.