论文部分内容阅读
为了解决传统施工现场安全管理的弊端,减少因施工人员未佩戴安全帽造成的人员伤亡,本文提出一种基于深度学习的安全帽佩戴检测与跟踪方法。首先通过深度学习YOLOv3目标检测网络实现安全帽佩戴检测,进一步运用卡尔曼滤波器和KM算法实现多目标跟踪与计数。复杂施工现场的测试结果表明:网络模型的检测速度可达45 fps,平均精确度为93%,且未佩戴安全帽的查准率和查全率分别为97%和95%,基本能够实现安全帽佩戴情况的实时检测。