论文部分内容阅读
无网格方法是一种新兴的数值计算方法,它是有限元法的重要补充.有限元法在许多特殊问题,如高度大变形问题、动态裂纹扩展、几何畸变、不连续问题等方面难以处理或不能解决.对再生核质点无网格方法的理论进行了研究,通过修正配点法实现其本质边界条件,将其应用到非线性问题的数值计算,通过自编程序对实例计算的结果表明,再生核质点法及本文对其本质边界条件的处理在求解非线性问题中是有效、可行的,结果精度高、收敛快.