论文部分内容阅读
一、直接导入
直接导入法又叫“开门见山”导入法,我们谈话写文章习惯于“开门见山”,这样主体突出,论点鲜明。当一些新授的数学知识难以借助旧知识引入时,教师可开门见山的点出课题,立即唤起学生的学习兴趣。例如,在讲《二面角》的内容时,教师可这样引入:“两条直线所成的角,直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容——二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速集中到新知识的探索追求中。再如,讲《用单位园中的线段表示三角函数值》一节时,教师可作如下导入:“前面我们学习了三角函数的定义,每种三角函数的数值都是用两条线段的比值来定义的,这是我们在应用中带来诸多不便,如果变成一条线段,那么应用起来就会方便的多,这节课就来解决这个问题:用单位园中的线段表示三角函数值。”这样引入课题,不仅明确了这堂课的主题,而且说明了产生这堂课的背景。
二、创设情境导入法
数学知识的获得,往往是通过时间得来的, 数学 知识的探求过程为我们展示了丰富的知识背景。选取具体的背景,可以使 学生 如临其境,生动形象。例如我在执教“相互独立事件同时发生的概率”时,创设如下情景:常说三个臭皮匠顶一个诸葛亮,能顶上吗?已知诸葛亮解出问题的概率为0.8,三个臭皮匠能解出问题的概率分别为0.5、0.45、0.4,且每个人必须独立解题,那么三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?
三、故事导入
故事导入是教师运用与新知识相关、有故事情节的资源,呈现其生动形象的情节内容,让学生通过对故事情节的感知体验,产生对新知识探求的迫切心情和欲望,进入对新知识学习的一种方法。听传说、讲故事是学生喜闻乐见的形式,这是由青少年生理、心理的特点所决定的。上课开始,一则美丽的传说,一个动人的故事,会使他们很快安静下来,从而使注意力高度集中,教师就可以把握住有利时机,随着故事的讲述,引领着学生的思维一步步完成教学任务,同时变学生的好奇心为浓厚的学习兴趣,就会得到事半功倍的效果。例如我讲授《等差数列的求和公式》时,就以十八世纪的大数学家高斯小时候的一个故事入题。由于这个故事学生都很熟悉,就请了一位学生来讲:有一次,高斯的小学老师想考考学生,就让学生算“1+2+3+…+100”。一会儿,高斯就举手回答:“5050。”老师大吃一惊,就问他为什么,原来高斯以首尾两数相加为101,共有50對,结果自然是101×50=5050。在学生觉得很有趣味的时候,我接上去:“这种思想方法充分体现了等差数列求和的思想方法。今天,我们就来推导公式,用理论来说明问题,比高斯更进一步,怎么样?”学生马上进入思维的积极状态,跃跃欲试,在轻松愉快的气氛中大大提高了求知欲。经过引导探讨,学生较容易地掌握了数列的求和方法----倒序相加法,得出了等差数列的前n项和公式。
四、温故知新导入法
温故知新的教学方法 ,可以将新旧知识有机地结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲“反函数”时,使学生回忆函数及映射的定义,提出问题引导学生反过来思考,从而引进反函数的概念。这样导入, 学生能从旧知识的复习中发现一串新知识,清楚反函数与原函数的关系,并且掌握了反函数的定义。
五、设疑导入
教师对某些内容故意制造疑团而成为悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。例如讲《余弦定理》时,教师可如下设置:“我们都熟悉直角三角形的三边满足勾股定理:c2=a2+b2,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有c2=a2+b2-x?钝角三角形中钝角的对边是否满足关系c2=a2+b2+x?假若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”引入了对余弦定理的推证。再如讲立体几何《球冠》一节时,教师可如下设疑:“由三个平行平面截一个球恰好把球的一条直径截成四等分,试问截得球面的四部分面积大小如何?”教师留出几分钟时间让学生观察议论,学生一般猜测两头面积较小,中间的两“圈”面积较大。教师这时却肯定的说:“这四部分面积时一样的,都是球面积的1/4!”又说:“这难道可能吗?两头看起来确实好像小,中间的圈要大,可是它们的面积相等却是事实!让我们来学习今天的内容:球冠。”通过这个内容的学习,学生自己就可以解开它们的面积为什么相等的迷。学生带着这个疑团来学习新课,不仅能提高注意力,而且这个结论也将使学生经久不忘。如何处理教材,如何设置疑点,是教学艺术的表现,良好的设疑可以激起学生学习的欲望,从而更有利于对新知识的理解。
六、矛盾利用
矛盾的事物引人思辩。引入矛盾,就如引水击石,激波荡澜,能刺激学生在积极思维状态中去吸收新的信息和知识。在讲授“曲线的参数方程”一节时,设计了物理学中物体的平抛运动,要求学生求其运动曲线的方程。当学生用求曲线普通方程的方法去思考时,竟找不到列方程的几何条件。老师点拨:如果不能直接寻找关系式,能否间接去找呢?一石击起千层浪,暂时陷入矛盾中的学生经过独立思考,并展开了热烈讨论,结果发现:借助时间参数,利用物理力学原理可以写出物体运动依赖时间变化的方程组,从而间接地得到了运动曲线方程。如此,学生对“参数方程”的学习感受很深。
总之,导入方法的运用要因人而宜,要因教学内容而宜。灵活掌握导入技能就象要灵活运用写作手段一样,引人入胜是最基本目的。只要是在此基础上形成的导入方式,都不失为一个好的教学方法。新颖有特色的导入方法常能营造最佳教学心理环境,常能改变学生上课的状态,使更多的学生进入积极的心理状态,提高上课效率,能使学生乐在其中,把数学学习看成是一种乐趣,从而使教学质量的提高也有了充分保证。
直接导入法又叫“开门见山”导入法,我们谈话写文章习惯于“开门见山”,这样主体突出,论点鲜明。当一些新授的数学知识难以借助旧知识引入时,教师可开门见山的点出课题,立即唤起学生的学习兴趣。例如,在讲《二面角》的内容时,教师可这样引入:“两条直线所成的角,直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容——二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速集中到新知识的探索追求中。再如,讲《用单位园中的线段表示三角函数值》一节时,教师可作如下导入:“前面我们学习了三角函数的定义,每种三角函数的数值都是用两条线段的比值来定义的,这是我们在应用中带来诸多不便,如果变成一条线段,那么应用起来就会方便的多,这节课就来解决这个问题:用单位园中的线段表示三角函数值。”这样引入课题,不仅明确了这堂课的主题,而且说明了产生这堂课的背景。
二、创设情境导入法
数学知识的获得,往往是通过时间得来的, 数学 知识的探求过程为我们展示了丰富的知识背景。选取具体的背景,可以使 学生 如临其境,生动形象。例如我在执教“相互独立事件同时发生的概率”时,创设如下情景:常说三个臭皮匠顶一个诸葛亮,能顶上吗?已知诸葛亮解出问题的概率为0.8,三个臭皮匠能解出问题的概率分别为0.5、0.45、0.4,且每个人必须独立解题,那么三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?
三、故事导入
故事导入是教师运用与新知识相关、有故事情节的资源,呈现其生动形象的情节内容,让学生通过对故事情节的感知体验,产生对新知识探求的迫切心情和欲望,进入对新知识学习的一种方法。听传说、讲故事是学生喜闻乐见的形式,这是由青少年生理、心理的特点所决定的。上课开始,一则美丽的传说,一个动人的故事,会使他们很快安静下来,从而使注意力高度集中,教师就可以把握住有利时机,随着故事的讲述,引领着学生的思维一步步完成教学任务,同时变学生的好奇心为浓厚的学习兴趣,就会得到事半功倍的效果。例如我讲授《等差数列的求和公式》时,就以十八世纪的大数学家高斯小时候的一个故事入题。由于这个故事学生都很熟悉,就请了一位学生来讲:有一次,高斯的小学老师想考考学生,就让学生算“1+2+3+…+100”。一会儿,高斯就举手回答:“5050。”老师大吃一惊,就问他为什么,原来高斯以首尾两数相加为101,共有50對,结果自然是101×50=5050。在学生觉得很有趣味的时候,我接上去:“这种思想方法充分体现了等差数列求和的思想方法。今天,我们就来推导公式,用理论来说明问题,比高斯更进一步,怎么样?”学生马上进入思维的积极状态,跃跃欲试,在轻松愉快的气氛中大大提高了求知欲。经过引导探讨,学生较容易地掌握了数列的求和方法----倒序相加法,得出了等差数列的前n项和公式。
四、温故知新导入法
温故知新的教学方法 ,可以将新旧知识有机地结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲“反函数”时,使学生回忆函数及映射的定义,提出问题引导学生反过来思考,从而引进反函数的概念。这样导入, 学生能从旧知识的复习中发现一串新知识,清楚反函数与原函数的关系,并且掌握了反函数的定义。
五、设疑导入
教师对某些内容故意制造疑团而成为悬念,提出一些必须学习了新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。例如讲《余弦定理》时,教师可如下设置:“我们都熟悉直角三角形的三边满足勾股定理:c2=a2+b2,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有c2=a2+b2-x?钝角三角形中钝角的对边是否满足关系c2=a2+b2+x?假若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”引入了对余弦定理的推证。再如讲立体几何《球冠》一节时,教师可如下设疑:“由三个平行平面截一个球恰好把球的一条直径截成四等分,试问截得球面的四部分面积大小如何?”教师留出几分钟时间让学生观察议论,学生一般猜测两头面积较小,中间的两“圈”面积较大。教师这时却肯定的说:“这四部分面积时一样的,都是球面积的1/4!”又说:“这难道可能吗?两头看起来确实好像小,中间的圈要大,可是它们的面积相等却是事实!让我们来学习今天的内容:球冠。”通过这个内容的学习,学生自己就可以解开它们的面积为什么相等的迷。学生带着这个疑团来学习新课,不仅能提高注意力,而且这个结论也将使学生经久不忘。如何处理教材,如何设置疑点,是教学艺术的表现,良好的设疑可以激起学生学习的欲望,从而更有利于对新知识的理解。
六、矛盾利用
矛盾的事物引人思辩。引入矛盾,就如引水击石,激波荡澜,能刺激学生在积极思维状态中去吸收新的信息和知识。在讲授“曲线的参数方程”一节时,设计了物理学中物体的平抛运动,要求学生求其运动曲线的方程。当学生用求曲线普通方程的方法去思考时,竟找不到列方程的几何条件。老师点拨:如果不能直接寻找关系式,能否间接去找呢?一石击起千层浪,暂时陷入矛盾中的学生经过独立思考,并展开了热烈讨论,结果发现:借助时间参数,利用物理力学原理可以写出物体运动依赖时间变化的方程组,从而间接地得到了运动曲线方程。如此,学生对“参数方程”的学习感受很深。
总之,导入方法的运用要因人而宜,要因教学内容而宜。灵活掌握导入技能就象要灵活运用写作手段一样,引人入胜是最基本目的。只要是在此基础上形成的导入方式,都不失为一个好的教学方法。新颖有特色的导入方法常能营造最佳教学心理环境,常能改变学生上课的状态,使更多的学生进入积极的心理状态,提高上课效率,能使学生乐在其中,把数学学习看成是一种乐趣,从而使教学质量的提高也有了充分保证。