【摘 要】
:
双模纠缠态是量子信息领域一种重要的量子资源,本文基于四波混频过程从理论上提出了对双模纠缠态的单个模式(单模放大方案)和对双模纠缠态的两个模式(双模放大方案)的放大.利用光学分束器模型来模拟在光学传输过程中损耗引入的真空场噪声,利用部分转置正定判据分析了两种不同的放大方案中四波混频过程的增益对初始双模纠缠态的纠缠程度的影响.结果 表明,在特定的损耗情况下,两个方案中初始双模纠缠态的纠缠度都随增益的增大而减小,直至消失,且双模放大方案中初始双模纠缠态纠缠消失得比单模放大方案中更快.本文的理论结果为实验上实现基
【机 构】
:
华东师范大学,精密光谱科学与技术国家重点实验室,上海 200062;华东师范大学,精密光谱科学与技术国家重点实验室,上海 200062;中国科学院超强激光科学卓越创新中心,上海 201800;浙江大学
论文部分内容阅读
双模纠缠态是量子信息领域一种重要的量子资源,本文基于四波混频过程从理论上提出了对双模纠缠态的单个模式(单模放大方案)和对双模纠缠态的两个模式(双模放大方案)的放大.利用光学分束器模型来模拟在光学传输过程中损耗引入的真空场噪声,利用部分转置正定判据分析了两种不同的放大方案中四波混频过程的增益对初始双模纠缠态的纠缠程度的影响.结果 表明,在特定的损耗情况下,两个方案中初始双模纠缠态的纠缠度都随增益的增大而减小,直至消失,且双模放大方案中初始双模纠缠态纠缠消失得比单模放大方案中更快.本文的理论结果为实验上实现基于四波混频过程的双模纠缠态的放大奠定了理论基础.
其他文献
船闸闸首结构复杂,属于大体积薄壁混凝土,施工期易在底板和输水廊道层等部位产生温度裂缝,影响结构的稳定与运行安全.本文以在建某船闸上闸首为研究对象,通过有限元仿真计算,研究了表面保温、通水冷却和吊空模板等温控措施对底板、输水廊道层温度场和应力场的影响.研究表明:表面保温能降低内外温差和昼夜温差的影响,最大拉应力降幅约0.37 MPa;通水冷却措施能大幅降低后期最大拉应力,最大降幅0.92 MPa;吊空模板能提高输水廊道隔墙层的最小抗裂安全度,最大增幅为0.63.因此,针对闸首需在底板和输水廊道部位采取相应的
2021年诺贝尔物理学奖颁发给德国学者克劳斯·哈塞尔曼(Klaus Hasselmann)与另外两位科学家.克劳斯·哈塞尔曼是著名的海洋学家、气象和气候学家、物理学家.文章将简述哈塞尔曼的研究经历,介绍他在大气响应中的信噪比和气候变化归因的多模态指纹方法等方面的重要学术成就.还将结合最新的政府间气候变化专门委员会第六次评估报告中有关气候变化归因的主要结论,阐述在哈塞尔曼的开创性工作基础上建立起来的气候变化归因理论与方法,构成了人类合作应对气候变化的重要科学基础之一.
1 什么是凝聚态物理学rn物理学也被称为“自然哲学”.简而言之,它研究的是时空和物质的基本结构及其深层的组织原理.当代物理学大体上可以分为四个主要分支:高能物理学、天文(宇宙)物理学、原子分子和光学物理学,以及凝聚态物理学.
量子通信是量子科学技术的一个重要研究领域,是一种利用量子力学原理,能够在合法各方之间安全地传输私密信息的通信方式.基于单光子的确定性安全量子通信通常需要在发送方和接收方之间来回两次传输单光子态,并利用局域幺正变换加载信息.本文提出了一种单向传输单光子态的确定性安全量子通信方案.发送方利用单光子的极化和time-bin两自由度构成的两组共轭基矢量来编码经典逻辑比特.接收方通过设计合适的测量装置可以在发送方辅助下确定性地获取比特信息并感知窃听,从而实现信息的确定性安全传输.另外,我们的协议使用线性光学元件和单
希格斯粒子的质量与地球轨道的椭圆度都比它们的理论估计值小几个数量级.这似乎是两个更大的量经过微调而抵消所造成的.粒子物理有两个最有趣的微调难题:希格斯玻色子的质量和宇宙常数.长期以来,人们一直认为粒子物理的微调可能与新的对称性有关,如难以解释的超对称性,或者与统计参数有关——我们微调的宇宙只是许多可能的多重宇宙之一.
为了解决变电站智能消防前端执行机构灵活性不足、定位精确度低等问题,本文建立了面向变电站智能消防机械臂高精度运动学模型.首先将机械臂通过主体结构简化,转换为刚体连杆模型,并基于Denavit-Hartenberg法的齐次变换矩阵来描述机械臂相邻两连杆的空间关系与运动轨迹.接着在此基础上,提出一种利用机械臂连杆模型几何约束关系,并针对智能消防系统中使用的四自由度机械臂,进行了正向与逆向运动学分析与求解,可在解算前判断机械臂能否到达预期位姿.该模型的计算过程不仅避免了复杂的矩阵运算,而且有效地解决了机械臂逆运动
人们熟知的量子技术大多与计算相关,一台好的、功能强大的计算机在解决复杂问题上是非常有吸引力的.计算机作为数据处理工具,无论是量子的还是经典的,都是将数据转换成信息后,才被用于工业、医学等领域,但前提是要有用来采集这些关键数据所必需的高质量传感器.
千年以来,人类在仰望火星.古代的人们时常在夜空中望见一颗红色的行星,亮度常变而轨迹复杂.“荧荧火光,离离乱惑”,被称为“荧惑”的火星在某些天象中或许是某种灾祸的化身.现代科学告诉我们,火星是地球的近邻,位于地球的外侧,无论是自转周期还是季节性气候变化,火星与地球都有着很大的相似之处.火星不仅引发了人们科学观测和科学研究的巨大兴趣,也成为许多科幻小说、电影中未来人类的“移居之地”.
我们的身体通过辐射热到环境中而损失了很大一部分热量,但服装设计师很少试图控制这种辐射.新的理论提出了一种可穿戴的可逆织物,它可以从一侧向外发射接近于零的辐射;而如果将织物翻穿,另一侧会发射大量的辐射.与以前由不透性膜制成的可逆织物不同,这种新织物将由微纤维组成,穿起来更舒适.这种薄薄的布料可以在阴凉的房间里用来保暖,在过暖的房间里翻过来穿保持凉爽.那么,我们就可以使用节能恒温器,而不会造成不适.
2021年度国家自然科学基金评审工作已结束,文章对物理科学一处本年度申请和资助项目情况进行了统计分析,将一年来的评审工作结果向广大科技界汇报.同时,对申请和资助过程中一些新政策、新动向以及碰到的一些新情况、新问题进行归纳和总结,供广大科研人员参考.物理科学一处各项工作得到科技界广大专家们的支持,在此向支持我们工作的专家们表示衷心感谢!