论文部分内容阅读
研究Pt单晶(210)、(310)和(510)三个阶梯晶面上CO_2电催化还原的表面过程.通过改变处理条件获得单晶电极不同的表面结构.研究结果指出,当铂单晶电极表面保持其确定原子排列结构时,对CO2还原的电催化活性随晶面上(110)台阶密度的降低而减小,即Pt(210)>Pt(310)>Pt(510);当三个电极表面发生氧的吸附导致原子排列结构重建时,其电催化活性均有不同程度的提高.虽然其活性顺序未发生变化,但(110)台阶位密度越大的表面其电催化活性增加的程度越高.研究指出Pt单晶电极的表面结构越开放,其电催化活性也越高,并且在外界条件诱导下更易于转变为具有更高反应活性的表面结构.而相对有序的表面结构则比较稳定.研究结果从微观层次获得CO2与Pt单晶电极表面相互作用的规律,深化了对CO2电催化还原表面过程的认识.
The surface processes of electrocatalytic reduction of CO_2 on Pt (210), (310) and (510) Pt planes were studied.The different surface structures of the single crystal electrode were obtained by changing the processing conditions.The results show that when the Pt single crystal The electrocatalytic activity of CO2 reduction decreases with the decrease of the (110) step density on the electrode surface, ie Pt (210)> Pt (310)> Pt (510) The adsorption of oxygen on the surface of the electrode leads to the increase of the electrocatalytic activity of the atomic arrangement structure. Although the order of activity does not change, the electrocatalytic activity of (110) The higher the degree.The higher the surface structure of the Pt single crystal electrode, the higher the electrocatalytic activity and the easier the transition to a more reactive surface structure under the induction of external conditions.The relatively ordered surface structure Then the results are stable.We obtained the law of interaction between CO2 and Pt single crystal electrode from the micro level and deepened our understanding of the surface electrocatalytic reduction of CO2.