论文部分内容阅读
Autoimmune diseases characterized by activation of immune effector cells and damage of target organs are currently treated with a combination of several disease-modifying antirheumatic drugs (DMARDs) that preserve different immunomodulatory mechanisms. Such a combination treatment strategy not only provides synergistic effects but also reduces side effects from individual drug. Tetrandrine (Tet), purified from a creeper Stephania tetrandra S Moore, is a bis-benzylisoquinoline alkaloid and has been used to treat patients with silicosis, autoim-mune disorders, and hypertension in Mainland China for decades. The accumulated studies both in vitro and in vivo reveal that Tet preserves a wide variety of immunosuppressive effects. Importantly, the Tet-mediated immu-nosuppressive mechanisms are evidently different from some known DMARDs. The synergistic effects have also been demonstrated between Tet and other DMARDs like FK506 and cyclosporin. These results highlight Tet a very potential candidate to be consid
Autoimmune diseases characterized by activation of immune effector cells and damage of target organs are currently treated with a combination of several disease-modifying antirheumatic drugs (DMARDs) that preserve different immunomodulatory mechanisms. Such a combination treatment strategy not only provides synergistic effects but also reduces side effects from individual drug. Tetrandrine (Tet), purified from a creeper Stephania tetrandra S Moore, is a bis-benzylisoquinoline alkaloid and has been used to treat patients with silicosis, autoim-mune disorders, and hypertension in Mainland China for decades. studies both in vitro and in vivo reveal that Tet preserves a wide variety of immunosuppressive effects. Importantly, the Tet-mediated immu-nosuppressive mechanisms are evidently different from some known DMARDs. The synergistic effects have also been been measured between Tet and other DMARDs like FK506 and cyclosporin. These results highlight Tet a very potential cand idate to be consid