论文部分内容阅读
Web spam是指通过内容作弊和网页间链接作弊来欺骗搜索引擎,从而提升自身搜索排名的作弊网页,它干扰了搜索结果的准确性和相关性。提出基于Co-Training模型的Web spam检测方法,使用了网页的两组相互独立的特征——基于内容的统计特征和基于网络图的链接特征,分别建立两个独立的基本分类器;使用Co-Training半监督式学习算法,借助大量未标记数据来改善分类器质量。在WEB SPAM-UK2007数据集上的实验证明:算法改善了SVM分类器的效果。