论文部分内容阅读
最近五年,卷积神经网络(CNN)得到了充分的发展,在图像分类领域,基于监督学习的算法在相关任务中取得了巨大的成功.但是与分类极为准确地粗粒度标签数据集相比,细粒度标签数据集的分类依旧是一个难点.地理图像被广泛应用于社会的各个方面,研究者往往需要对大规模的地理图像数据进行分类,但是由于地理图像的特征差异较小,因此自动化分类是相对困难的.对地理图像的细粒度特征进行标记,通过深度卷积网络对其进行训练和学习,极大地提高地理图像的分类精度.