论文部分内容阅读
为了提高稀疏表示跟踪模型性能,提出基于全局与局部结构反稀疏外观模型的目标跟踪算法(GLIS).首先采用反稀疏表达方式一次求解优化问题,计算所有粒子权重以提升算法实时性.然后,提出基于联合判别相似度图(JDS map)排名机制以提升算法鲁棒性,将候选目标分块并分别计算加权稀疏解,联结不同权重的局部块为整体并计算其稀疏解.最后采用联合机制将2种稀疏解合并为JDS map.在跟踪过程中,采用双重模板更新机制更新目标模板及权重模板.实验表明,在复杂环境下,文中算法仍然可以准确跟踪目标.