论文部分内容阅读
研究一种相关主题模型(CTM)与支持向量机(SVM)相结合的文本分类方法。该方法用CTM对数据集建模以降低数据的维度,用SVM对简化后的文本数据进行分类。为使CTM模型能够较好地对数据集进行建模,在该方法中用DBSCAN聚类方法对数据进行聚类,根据聚类所得到的聚类中心点数目确定CTM模型的主题参数。实验结果表明,该方法可以加快分类速度并提高分类精度。