论文部分内容阅读
研究现代分布式软件系统中交互实体的行为可信性问题,关注运行期意图、情景、行为和行为效应之间的关系,采用先进的统计机器学习工具分析行为踪迹规律,提出了一个新的软件行为分析与态势预测方法.针对松散聚合的交互实体间可能产生新的交互事件和行为模式的问题,本文用分层Dirichlet过程和无限隐Markov模型对被监测的交互接口数据进行聚类确定未知交互事件,用含有未知事件的序列进行行为模式的半监督学习,由管理者将其添加到规则与知识库中.在确定未知事件和行为模式时,用Beam抽样方法较其他方法(如Gibbs抽样