论文部分内容阅读
This paper presents an improved well-balanced Godunov-type2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for the water depth is implemented to resolve the stationary or wet/dry fronts. The bed slope source term is discretized using a central difference method to capture the static flow state over the irregular topography. Second-order accuracy in space is achieved by using the slope limited linear reconstruction method. With the proposed method, the model can avoid the partially wetting/drying cell problem and maintain the mass conservation. The proposed model is tested and verified against three theoretical benchmark tests and two experimental dam break flows. Further, the model is applied to predict the maximum water level and the flood arrival time at different gauge points for the Malpasset dam break event. The predictions agree well with the numerical results and the measurement data published in literature, which demonstrates that with the present model, a well-balanced state can be achieved and the water depth can be nonnegative when the Courant number is kept less than 0.25.