论文部分内容阅读
分别运用误差反向传播(errorback propagation)算法、扩展卡尔曼滤波(extended kalman filter)和数值积分卡尔曼滤波(cubature kalman filter)算法对多层神经网络模型进行逐次状态估计,并将其用于解决异或的分类问题。从仿真实验结果来看,利用BP,EKF和CKF算法训练的神经网络的输出信号的均方误差曲线的收敛速度依次加快,这使得神经网络的实际输出值越来越逼近其期望输出值,同时针对异或问题3种算法都得到了良好的分类结果.