论文部分内容阅读
摘 要:笔者在审查图纸过程中,发现工程电气设计中一些与防雷设计及接地设计有关的问题 ,常因对现行规范和标准的掌握和理解不够充分 、全面,或因规范本身的某些不足,而造成一些不当做法和错误 , 进行了一下的分析。
关键词:防雷接地 ;接地故障;电气设计;
1 防雷接地設计应注意的问题
1)对存在有1区、2区爆炸危险环境的建筑物重视不够,像市政污水厂的沼气压缩机间、沼气控制室、二氧化氯发生间等应根据《建筑物防雷设计规范》GB50057-1994(2000年版)第2.0.3条第五款、第六款的规定,按二类防雷建筑物进行设计,而设计人员经常按水厂大部分构筑物一样,按三类防雷进行设计。
2)对一些内部设有信息系统的建筑物,只考虑经计算年预计雷击次数小于0.06次/a,不做防雷设计,根据《建筑物防雷设计规范》GB50057-1994(2000年版)第6.1.3条 “在设有信息系统的建筑物需防雷击电磁脉冲的情况下,当该建筑物没有装设防直击雷装置和不处于其它建筑物或物体的保护范围内时,宜按第三类防雷建筑物采取防直击雷的防雷措施”的规定,应考虑按第三类防雷建筑物设计避雷装置。
3)对于像仓库、车库等一些辅助建筑物,计算年预计雷击次数小于0.06次/a,也没有信息系统的建筑物一律按三类防雷建筑物考虑防雷设计,随意抬高防雷类别,尽管对防雷击安全有好处,但也造成了一定的浪费,设计人员在设计中宜按《建筑物防雷设计规范》GB50057-1994(2000年版) 第2.0.3条的具体规定执行,避免造成浪费。
4)在三类防雷建筑物屋顶利用屋面彩钢板作为避雷接闪器,在屋顶还按20m*20m或24m*16m设置避雷带网格,金属屋面本身是允许作为接闪器的,没必要在做屋面避雷带,可根据《建筑物防雷设计规范》GB50057-1994(2000年版) 第4.1.4条的规定核实屋面板的厚度、搭接长度、绝缘被覆层满足要求即可,需要注意的是,该条中特别注明“薄的油漆保护层或0.5mm 厚沥青层或1mm 厚聚氯乙烯层均不属于绝缘被覆层”,设计人员往往觉得屋面板有绝缘涂层就人为地增设避雷带,造成不必要的浪费。
5)在建筑物采用联合接地时,接地电阻值未按要求设计,根据国标《建筑物电子信息系统防雷技术规范》(GB50343-2004)第5.2.5条“接地与交流工作接地、直流工作接地、安全保护接地共用一组接地装置时,接地装置的接地电阻值必须按接入设备中要求的最小值确定”。再根据国标《民用建筑电气设计规范》JGJ16-2008第12.7.2条第2款 “电子计算机的三种接地系统宜共用接地网,当采用共用接地方式时,其接地电阻应以诸种接地系统中要求接地电阻最小的接地电阻值为依据,当与防雷接地系统共用时,接地电阻值不应大于1欧姆”,可将联合接地电阻最小值取值为1欧姆。
6)一些设计人员在建筑物总配电箱装设了浪涌保护装置后,认为进线电缆不再需要设置防止雷电波侵入的措施,因此进线电缆金属外皮在入户处不再接地及等电位连接,这种做法不妥,浪涌保护器是用于限制暂态过电压和分流浪涌电流的装置,是为了保护连接于电气回路的一些电气设备的安全而设,而进线电缆金属外皮接地及等电位连接是为了防止雷电波侵入及人身安全服务,尽管都有防止大电流、高电压击穿设备的作用,但二者的作用不近相同,应根据相关的规范要求结合工程需要综合考虑,不可利用浪涌保护装置替代接地及等电位连接,反之亦然。
7) 在工程设计中有些设计人员将计算机系统单独接地,没有做等电位连接,这种做法是错误的,不满足国标《建筑物电子信息系统防雷技术规范》(GB50343-2004)第5.1.2条“需要保护的电子信息系统必须采取等电位连接与接地保护措施”。
10 kV系统经低电阻接地后 , 1 0/0.4kV配变电所电气设计应注意的问题
我国 10kV配电网一直采用中性点不接地或 经消弧线圈接地系统 ,其主要优点是在单相接地 后可带故障继续运行 142小时,不致立即中断 供电,相对提高了供电可靠性。随着我国城市10kV网络电缆的增多,对地电容电流大大超过 20A的限值。发生单相接地故障时由于电弧能量 的增大而使其自熄的概率极小 ,从而转化成相问 短路 ,反而扩大了事故,使原有的优点不复存在。 因此 ,近年来一些城市电网根据电网电缆不断增 多的趋势开始改变 10kV不接地系统而采用经低 电阻接地的系统,这对于系统单相接地时降低异 常过电压、改善电气设备运行条件十分有利,但 此系统接地故障时的接地电流可达数百上千安 , 这将给 10/0.4kV配变电所的设计造成一定影响 和变化 。在 10kV中性点不接地系统条件下 , 10/0.4kV配变电所的高压保护接地与低压的系 统接地共用接地极,其接地电阻不大于 4a.10kV 系统发生单相接地故障时,只发出故障报警信号 等等,这些做法我们都已很熟悉。但对 10kV系统 经低电阻接地后会产生什么问题重视不够,在工 程设计中很少去关注和了解作为供电电源的 1 0kV系统采用的是何种接地方式。笔者在审查某大型污水处理厂施工图设计时 ,发现该工程35/10kV总降是由供电局设计的,其 10kV侧利用兼做所用变的接地变压器中性点经 15~/小电阻接地,而厂内 10/0.4kV配变电所的设计仍沿用了1 0kV不接地系统时的做法,设计者完全没有注意到作为电源端的 10kV系统这一改变。 10/0.4kV配变电所作为建筑物配电装置 (有关标准简称为B类电气装置 ),既是 10kV系统的负荷端,同时也是低压系统的电源端 ,当其高压侧工作于低电阻接地系统时,配电设计会有较大的变化。
1)10kV配电系统的电气设计在中性点经低电阻接地后,发生接地故障时故障信号应作用于跳闸,而非只作用于信号;接地故障保护采用零序电流保护,且由于接地故障电流与故障点所在位置无关 ,仅与接地点的过渡电阻 、线路的分布电容和中性点接地电阻有关 ,故只能采用带阶梯时限的零序电流保护来保证上、下级保护动作的选择性;电压互感器的接线由于不再检测零序电压作用于信号 ,而改为V—V接线;10kV系统经低电阻接地后,可降低谐振过电压的幅值 ,抑制了弧光接地过电压,且由于电源的迅速切断,对系统元件的绝缘水平可大为降低 ,如电力电缆的电压等级 u可由 8.7/10kV降为选择 6/10kV等,可见一、二次线的设计都要有所改变。
2)对于低压系统主要是对 10kV侧接地故障过电压对人身和设备危害的防范,如图 l所示,在变电所高压侧发生接地故障时,接地故障电流Id在变 电所接地 电阻 R日上产生 的故障 电压Uf=I承 由于 Id的增大而增大,由于低压系统中性点接地与高压保护接地共用同一 R啦接地极 ,对于 TN系统 ,此一上千伏的故障电压 u 将沿 PE(PEN)线传导至低压系统引起工频暂态过电压引发人身电击事故,对于 TT系统,故障过电压 u虽不会传导到低压电气装置的外露导电部分上而引起电击事故,但却存在对电气设备和线路对地绝缘产生 Uf+U。(相电压 )的工频过电压,造成短路或接地火灾等危害。在设计上应采取的防范措施主要有:
(1)按 《交流电气装置的接地》(DL/T621—1997)标准的要求 ,当变电所和低压用户不在同一建筑物内时,低压系统不得与电源配电变压器的保护接地共用接地装置,即分设两个接地,低压系统 电源接地点应在距该配电变压器适当的地点设置专用接地装置,其接地电阻不大于建筑物户外不具备总等电位联结条件的电气装置则改为局部 TT系统,以防人身电击事故。
(2)当变电所和低压用户在同一建筑物内时,由 于具有总等电位联结的作用,可以共用接地装置。
(3)当变电所和低压用户不在同一建筑物内 时,TT系统应注意降低 10/0.4kV变电所接地电 阻 RB,使 I 和 RB的乘积小于 1200Vt 1,以防低压 装置内绝缘击穿事故。
3 构筑物电气装置的接地 、等电位联结问题
在建筑物的电气设计中,另一个 常见的问题是每一个工艺构筑物 (如各种类型钢 筋混凝土结构的池子 )都设有人工接地极,其接 地电阻有的要求不大于,有的要求不大于 10f2。在图纸的设计说明中有的称其为 “重复接 地”,有的称其为 “等电位接地”,甚至于有的设 计还将整个厂区若干个构筑物的这些接地与向 其供电的配变电所的接地通过用镀锌扁钢相互 连在一起。那么,这样的做法是否正确?有无必要 呢?这其中涉及到对 “重复接地”和 “等电位联结”作用的理解及二者防电击有何不同效果的认 识问题。也反映出在接地与等电位联结关系上的 一些模糊认识 ,正如不少人认为等电位联结就必 须接地,还有的认为等电位联结就是接地 ,实际 二者既有区别又有联系。 按照我国的习惯做法 ,TN系统在进线处设 置接地极作重复接地似乎是必不可少的,规范规定在电气装置距低压系统电源接地点的距离超 过 50m时,PE或 PEN线应重复接地。重复接地 的作用是降低 PE或 PEN线的对地电位 ,从而降 低漏电设备的接触电压;对于三相四线供电线路 PEN线的重复接地还可减轻因 “断零”而烧坏单相用电设备的程度。但 IEC国际标准则更强调等 电位联结在电气安全上的作用,它在防人身电击 、防雷 、防火以及信息設备防干扰等方面都比 接地(指接大地 )有更好的效果。现以水处理构 筑物上的末端回路用电设备一般均为三相电力 设备,且由MCC采用电缆放射式供电,当发生图 2(a)所示的(其中虚线所示为重复接地,点划线 所示为局部等电位联结 )接地故障时,如仅做重 复接地 ,其接地电阻为 RA,则其等效图如图 2 (b)所示。由图可知施加于人体的预期接触电压 为 PE线压降在 RA上的分压 ,其值为 I ×z × D 。试举例如下: K B十K‘A 假设该用电回路为 4芯等截面 16mm PVC 铜芯电缆 ,长度 100m,ZL=Z~e=O.13f/(线芯温度 T T一’一'n 0=70~C),Id=丽 万 =846A,Ut d D 1nh z u_ ‘A =8460·131078·6V > 50V PE 4+(接触电压限值 );如取 R =4Q,则 U,--55V>50V。 可见仅做重复接地时,无论其接地电阻是 10t"/ 或均存在电击危险的可能。
如果不做重复接地,而只将电气装置外露可 导电部分与伸手可及范围 (2.5m)的装置外导电 部分 (如金属栏杆等 )以及人站立处的构筑物钢 筋这三者之问做辅助或局部等电位联结,则漏电 设备与人体之间不存在电位差,因而也就无由发 生人身电击危险。 我国的接地规范推荐充分利用自然接地体 做接地极 ,不但节省土石方工作量和钢材 ,而且 寿命长,电阻低。在利用构筑物的结构钢筋实施等电位联结的同时,也达到了重复接地的目的。可见,采用等电位联结是消除电击危险最为经济 有效的办法。IEC标准认为,I类设备的外露导电
部分如没有做接地或者等电位联结,仅仅自动切 断电源不能单独成为一个防电击措施。因此对于 处于总等电位联结作用区以外,尤其户外场所的 电气装置,在有条件时,实施辅助等电位联结或 局部等电位联结是作为防电击综合措施中一项 不可或缺的部分。水处理厂厂区内的工艺构筑物 大多数具备等电位联结的条件,而对于无等电位 联结场所的户外电气装置 ,则需如前所述应采用 局部 TT系统。 此外,就电击防护而言,做等电位联结的目 的是使人体可同时触及的导电部分的电位相等 或接近 ,以消除或减少电击危险。人体不可能同 时触及相距甚远的导电物体,将包括变电所的接 地极和各用电单元的接地极在地中用扁钢相接在 一起 ,不过是对电源和末端用电设备之间的PE线 并联—个阻抗大许多的导体而已,并无实际意义。
注:文章内的图表、公式请到PDF格式下查看
关键词:防雷接地 ;接地故障;电气设计;
1 防雷接地設计应注意的问题
1)对存在有1区、2区爆炸危险环境的建筑物重视不够,像市政污水厂的沼气压缩机间、沼气控制室、二氧化氯发生间等应根据《建筑物防雷设计规范》GB50057-1994(2000年版)第2.0.3条第五款、第六款的规定,按二类防雷建筑物进行设计,而设计人员经常按水厂大部分构筑物一样,按三类防雷进行设计。
2)对一些内部设有信息系统的建筑物,只考虑经计算年预计雷击次数小于0.06次/a,不做防雷设计,根据《建筑物防雷设计规范》GB50057-1994(2000年版)第6.1.3条 “在设有信息系统的建筑物需防雷击电磁脉冲的情况下,当该建筑物没有装设防直击雷装置和不处于其它建筑物或物体的保护范围内时,宜按第三类防雷建筑物采取防直击雷的防雷措施”的规定,应考虑按第三类防雷建筑物设计避雷装置。
3)对于像仓库、车库等一些辅助建筑物,计算年预计雷击次数小于0.06次/a,也没有信息系统的建筑物一律按三类防雷建筑物考虑防雷设计,随意抬高防雷类别,尽管对防雷击安全有好处,但也造成了一定的浪费,设计人员在设计中宜按《建筑物防雷设计规范》GB50057-1994(2000年版) 第2.0.3条的具体规定执行,避免造成浪费。
4)在三类防雷建筑物屋顶利用屋面彩钢板作为避雷接闪器,在屋顶还按20m*20m或24m*16m设置避雷带网格,金属屋面本身是允许作为接闪器的,没必要在做屋面避雷带,可根据《建筑物防雷设计规范》GB50057-1994(2000年版) 第4.1.4条的规定核实屋面板的厚度、搭接长度、绝缘被覆层满足要求即可,需要注意的是,该条中特别注明“薄的油漆保护层或0.5mm 厚沥青层或1mm 厚聚氯乙烯层均不属于绝缘被覆层”,设计人员往往觉得屋面板有绝缘涂层就人为地增设避雷带,造成不必要的浪费。
5)在建筑物采用联合接地时,接地电阻值未按要求设计,根据国标《建筑物电子信息系统防雷技术规范》(GB50343-2004)第5.2.5条“接地与交流工作接地、直流工作接地、安全保护接地共用一组接地装置时,接地装置的接地电阻值必须按接入设备中要求的最小值确定”。再根据国标《民用建筑电气设计规范》JGJ16-2008第12.7.2条第2款 “电子计算机的三种接地系统宜共用接地网,当采用共用接地方式时,其接地电阻应以诸种接地系统中要求接地电阻最小的接地电阻值为依据,当与防雷接地系统共用时,接地电阻值不应大于1欧姆”,可将联合接地电阻最小值取值为1欧姆。
6)一些设计人员在建筑物总配电箱装设了浪涌保护装置后,认为进线电缆不再需要设置防止雷电波侵入的措施,因此进线电缆金属外皮在入户处不再接地及等电位连接,这种做法不妥,浪涌保护器是用于限制暂态过电压和分流浪涌电流的装置,是为了保护连接于电气回路的一些电气设备的安全而设,而进线电缆金属外皮接地及等电位连接是为了防止雷电波侵入及人身安全服务,尽管都有防止大电流、高电压击穿设备的作用,但二者的作用不近相同,应根据相关的规范要求结合工程需要综合考虑,不可利用浪涌保护装置替代接地及等电位连接,反之亦然。
7) 在工程设计中有些设计人员将计算机系统单独接地,没有做等电位连接,这种做法是错误的,不满足国标《建筑物电子信息系统防雷技术规范》(GB50343-2004)第5.1.2条“需要保护的电子信息系统必须采取等电位连接与接地保护措施”。
10 kV系统经低电阻接地后 , 1 0/0.4kV配变电所电气设计应注意的问题
我国 10kV配电网一直采用中性点不接地或 经消弧线圈接地系统 ,其主要优点是在单相接地 后可带故障继续运行 142小时,不致立即中断 供电,相对提高了供电可靠性。随着我国城市10kV网络电缆的增多,对地电容电流大大超过 20A的限值。发生单相接地故障时由于电弧能量 的增大而使其自熄的概率极小 ,从而转化成相问 短路 ,反而扩大了事故,使原有的优点不复存在。 因此 ,近年来一些城市电网根据电网电缆不断增 多的趋势开始改变 10kV不接地系统而采用经低 电阻接地的系统,这对于系统单相接地时降低异 常过电压、改善电气设备运行条件十分有利,但 此系统接地故障时的接地电流可达数百上千安 , 这将给 10/0.4kV配变电所的设计造成一定影响 和变化 。在 10kV中性点不接地系统条件下 , 10/0.4kV配变电所的高压保护接地与低压的系 统接地共用接地极,其接地电阻不大于 4a.10kV 系统发生单相接地故障时,只发出故障报警信号 等等,这些做法我们都已很熟悉。但对 10kV系统 经低电阻接地后会产生什么问题重视不够,在工 程设计中很少去关注和了解作为供电电源的 1 0kV系统采用的是何种接地方式。笔者在审查某大型污水处理厂施工图设计时 ,发现该工程35/10kV总降是由供电局设计的,其 10kV侧利用兼做所用变的接地变压器中性点经 15~/小电阻接地,而厂内 10/0.4kV配变电所的设计仍沿用了1 0kV不接地系统时的做法,设计者完全没有注意到作为电源端的 10kV系统这一改变。 10/0.4kV配变电所作为建筑物配电装置 (有关标准简称为B类电气装置 ),既是 10kV系统的负荷端,同时也是低压系统的电源端 ,当其高压侧工作于低电阻接地系统时,配电设计会有较大的变化。
1)10kV配电系统的电气设计在中性点经低电阻接地后,发生接地故障时故障信号应作用于跳闸,而非只作用于信号;接地故障保护采用零序电流保护,且由于接地故障电流与故障点所在位置无关 ,仅与接地点的过渡电阻 、线路的分布电容和中性点接地电阻有关 ,故只能采用带阶梯时限的零序电流保护来保证上、下级保护动作的选择性;电压互感器的接线由于不再检测零序电压作用于信号 ,而改为V—V接线;10kV系统经低电阻接地后,可降低谐振过电压的幅值 ,抑制了弧光接地过电压,且由于电源的迅速切断,对系统元件的绝缘水平可大为降低 ,如电力电缆的电压等级 u可由 8.7/10kV降为选择 6/10kV等,可见一、二次线的设计都要有所改变。
2)对于低压系统主要是对 10kV侧接地故障过电压对人身和设备危害的防范,如图 l所示,在变电所高压侧发生接地故障时,接地故障电流Id在变 电所接地 电阻 R日上产生 的故障 电压Uf=I承 由于 Id的增大而增大,由于低压系统中性点接地与高压保护接地共用同一 R啦接地极 ,对于 TN系统 ,此一上千伏的故障电压 u 将沿 PE(PEN)线传导至低压系统引起工频暂态过电压引发人身电击事故,对于 TT系统,故障过电压 u虽不会传导到低压电气装置的外露导电部分上而引起电击事故,但却存在对电气设备和线路对地绝缘产生 Uf+U。(相电压 )的工频过电压,造成短路或接地火灾等危害。在设计上应采取的防范措施主要有:
(1)按 《交流电气装置的接地》(DL/T621—1997)标准的要求 ,当变电所和低压用户不在同一建筑物内时,低压系统不得与电源配电变压器的保护接地共用接地装置,即分设两个接地,低压系统 电源接地点应在距该配电变压器适当的地点设置专用接地装置,其接地电阻不大于建筑物户外不具备总等电位联结条件的电气装置则改为局部 TT系统,以防人身电击事故。
(2)当变电所和低压用户在同一建筑物内时,由 于具有总等电位联结的作用,可以共用接地装置。
(3)当变电所和低压用户不在同一建筑物内 时,TT系统应注意降低 10/0.4kV变电所接地电 阻 RB,使 I 和 RB的乘积小于 1200Vt 1,以防低压 装置内绝缘击穿事故。
3 构筑物电气装置的接地 、等电位联结问题
在建筑物的电气设计中,另一个 常见的问题是每一个工艺构筑物 (如各种类型钢 筋混凝土结构的池子 )都设有人工接地极,其接 地电阻有的要求不大于,有的要求不大于 10f2。在图纸的设计说明中有的称其为 “重复接 地”,有的称其为 “等电位接地”,甚至于有的设 计还将整个厂区若干个构筑物的这些接地与向 其供电的配变电所的接地通过用镀锌扁钢相互 连在一起。那么,这样的做法是否正确?有无必要 呢?这其中涉及到对 “重复接地”和 “等电位联结”作用的理解及二者防电击有何不同效果的认 识问题。也反映出在接地与等电位联结关系上的 一些模糊认识 ,正如不少人认为等电位联结就必 须接地,还有的认为等电位联结就是接地 ,实际 二者既有区别又有联系。 按照我国的习惯做法 ,TN系统在进线处设 置接地极作重复接地似乎是必不可少的,规范规定在电气装置距低压系统电源接地点的距离超 过 50m时,PE或 PEN线应重复接地。重复接地 的作用是降低 PE或 PEN线的对地电位 ,从而降 低漏电设备的接触电压;对于三相四线供电线路 PEN线的重复接地还可减轻因 “断零”而烧坏单相用电设备的程度。但 IEC国际标准则更强调等 电位联结在电气安全上的作用,它在防人身电击 、防雷 、防火以及信息設备防干扰等方面都比 接地(指接大地 )有更好的效果。现以水处理构 筑物上的末端回路用电设备一般均为三相电力 设备,且由MCC采用电缆放射式供电,当发生图 2(a)所示的(其中虚线所示为重复接地,点划线 所示为局部等电位联结 )接地故障时,如仅做重 复接地 ,其接地电阻为 RA,则其等效图如图 2 (b)所示。由图可知施加于人体的预期接触电压 为 PE线压降在 RA上的分压 ,其值为 I ×z × D 。试举例如下: K B十K‘A 假设该用电回路为 4芯等截面 16mm PVC 铜芯电缆 ,长度 100m,ZL=Z~e=O.13f/(线芯温度 T T一’一'n 0=70~C),Id=丽 万 =846A,Ut d D 1nh z u_ ‘A =8460·131078·6V > 50V PE 4+(接触电压限值 );如取 R =4Q,则 U,--55V>50V。 可见仅做重复接地时,无论其接地电阻是 10t"/ 或均存在电击危险的可能。
如果不做重复接地,而只将电气装置外露可 导电部分与伸手可及范围 (2.5m)的装置外导电 部分 (如金属栏杆等 )以及人站立处的构筑物钢 筋这三者之问做辅助或局部等电位联结,则漏电 设备与人体之间不存在电位差,因而也就无由发 生人身电击危险。 我国的接地规范推荐充分利用自然接地体 做接地极 ,不但节省土石方工作量和钢材 ,而且 寿命长,电阻低。在利用构筑物的结构钢筋实施等电位联结的同时,也达到了重复接地的目的。可见,采用等电位联结是消除电击危险最为经济 有效的办法。IEC标准认为,I类设备的外露导电
部分如没有做接地或者等电位联结,仅仅自动切 断电源不能单独成为一个防电击措施。因此对于 处于总等电位联结作用区以外,尤其户外场所的 电气装置,在有条件时,实施辅助等电位联结或 局部等电位联结是作为防电击综合措施中一项 不可或缺的部分。水处理厂厂区内的工艺构筑物 大多数具备等电位联结的条件,而对于无等电位 联结场所的户外电气装置 ,则需如前所述应采用 局部 TT系统。 此外,就电击防护而言,做等电位联结的目 的是使人体可同时触及的导电部分的电位相等 或接近 ,以消除或减少电击危险。人体不可能同 时触及相距甚远的导电物体,将包括变电所的接 地极和各用电单元的接地极在地中用扁钢相接在 一起 ,不过是对电源和末端用电设备之间的PE线 并联—个阻抗大许多的导体而已,并无实际意义。
注:文章内的图表、公式请到PDF格式下查看