论文部分内容阅读
文章主要研究负超可加相依(negatively superadditive dependent,NSD)随机变量序列的强收敛性。利用NSD随机变量序列的Rosenthal型极大值不等式建立了NSD随机变量序列加权和的完全收敛性,并且在同样的条件下得到了较完全收敛性更强的完全矩收敛性的结果,所得结果推广并改进了负相协(negatively associated,NA)序列相应的结果。作为主要结果的应用,该文进一步得到了关于NSD随机变量加权和的强大数律并给出了数值模拟。