论文部分内容阅读
通过对粗糙集和BP神经网络的分析研究,以专家系统为核心,提出了一种基于粗糙集神经网络的燃煤发热量预测模型;选取影响燃煤发热量的6个参数,利用粗糙集理论对原始信息表进行约简操作,去除冗余的属性和属性值,得到约简规则,并将其作为BP神经网络的输入,对燃煤发热量进行预测;通过分析对比线性回归方法和粗糙集神经网络方法,说明该模型能有效地简化神经网络的网络结构,减少网络的训练步数,提高网络的学习效率,能够较准确地对燃煤发热量进行预测。