论文部分内容阅读
精确预测剪接位点是真核基因系统研究的第一步。为了取得更加精确的预测结果,本文采用了一个新的标识序列识别方法HM-SVM对剪接位点进行识别。依据剪接位点附近存在的序列保守性,将联合核函数学习融入最大边缘分类器,结合HM-SVM工作集最优化算法,构建并生成了健壮分类器。实验结果表明,该方法在对于剪接位点的识别中,较目前常用的机器学习方法,获得了更高识别率。