论文部分内容阅读
提出一种针对层次分类的文本特征选择方法.先给出类别层次相关度的概念,并利用分类树和训练数据在不同层次上的概率分布进行计算,进而得到分类树中不同类别的重要性.最后基于前面的计算结果,计算每个特征对类别的识别能力,并选择识别能力大的特征组成用于分类的特征集合.实验表明该方法在选取的特征质量以及在accuracy、F1和micro-Precision等分类测度上均优于传统方法.