论文部分内容阅读
【摘要】分类讨论思想方法是一种依据数学对象本质属性的相同点和差异点,将数学对象区分为不同种类的数学思想方法。分类思想对培养学生思维的条理性、缜密性及提高学生分面、周密地分析问题和解决问题能力都起到十分关键的作用。
【关键词】数学教学;分类讨论;思想方法
【中图分类号】G268【文章标识码】B【文章编号】1326-3587(2012)06-0102-01
数学家乔治• 波利亚说过:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”。随着课程改革的深入,应试教育“向”素质教育“转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。在中学数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。
数学分类讨论思想,贯穿于整个中学数学的全部内容中,应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。但是分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。
一、渗透分类思想,养成分类的意识
每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。比如在“有理数”这一章的教学中,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
二、学习分类方法,增强思维的缜密性
在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。
分类的方法常有以下几种:
1、根据某些数学概念的定义进行分类
在初中阶段的教学内容中,一些数学概念的定义,如有理数的建立,绝对值的化简,一元二次方程ax2+bx+c=0(a≠0)根的判别式,两圆的五种位置关系等等……,都渗透着分类讨论的数学思想,对涉及到分类讨论思想的概念,教师在讲授这些概念时要准确、科学,要让学生对分类讨论思想的概念有正确的认知、理解和牢固的掌握。
例1:已知a是有理数,那么 |a| 与a的关系是( )
(A)|a| > a(B)|a| < a(C)|a| = a (D|a| ≥ a
分析:绝对值概念是一种需要进行简单的分类讨论的概念
(1)当a为正有理数或零时,|a| = a;
(2)当a为负有理数,即a< 0时,|a|= -a > 0,|a| =-a> a.得正确答案:D。
但我们会发现,总有一部分学生会选C,究其原因,是没弄清绝对值这一概念,认为求一个数的绝对值,如:|5|=5;|-7。5|=7。5;……,只要去掉绝对值里面的负号.实际上,要讲清绝对值这一概念应从绝对值的几何意义说起,也就是一个数的绝对值就是数轴上表示这个数的点与原点的距离,这样学生自然而然的会得出绝对值的三种分类讨论情况。
为了使学生能牢固掌握初中数学中有关涉及到分类讨论思想的概念,有时可以采用让学生操作、分组讨论、师生一起加以归纳总结,同时增加变式训练的教学方法。
2、根据运算性质的适用范围或运算的特殊规定而分类
例2:知:(a+b)2011=-1,(a-b)2012=1,试求 a2011+b2012的值。
分析:由(a+b)2011=-1,得a+b=-1;由(a-b)2012=1,得a-b=1或-1
因此要分两种情况进行求解:a+b=-1,a-b=1或a+b=-1,a-b=-1,所以a2011+b2012 的值为1或-1。
3、根据字母的不同取值进行分类
对于具体问题,如函数、方程、不等式中的解、求代数式的值等,它们随着题中所给字母的不同取值而变化,这时要对字母的取值进行讨论。
例3:当m=________时,函数y=(m+5)x 2m_1 +7x-3(x≠0)是一个一次函数。
分析:(m+5)x 2m_1可能是一次项或常数项,也可能m+5=0,因此,分三种情况讨论:
(1)2m-1=1;m=1
(2)2m-1=0;m=
(3)m+5=0; m= -5
只有抓住了分类讨论的动因,把握住了分类的标准,才能做到分类时条理清楚、标准一致,在解答问题时就不会重复或遗漏,保证解题的准确率。
4、根据某些定理或公式的限制条件进行分类
例4:已知:等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角为________。
分析:这个等腰三角形的高的位置可能在其内部或外部,这条高等于该三角形某一条边的长度的一半,某一条边又可分为底边或腰两种情况,所以要对高在三角形的内部或外部以及高是底边或腰的长度的一半进行分类讨论,最后得出顶角为30º、120º或150º。
正确解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类出各种符合条件的图形.是正确解答此类分类讨论问题的关键,教学中应注意对学生画图能力和空间想象能力的培养,让学生多操作、多思考,提高学生的数学能力,同时通过对开放性问题的讨论,对条件的不确定性与结论多样性的探索、猜想,充分拓展学生的思维空间,使他们的思维更深刻、广阔、活跃。
5、根据图形的特征或相互间的关系进行分类
如三角形按角分类,有锐角三角形、直角三角形、钝角三角形;直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。
在证明圆周角定理时,由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况,这是一种从定理的证明过程中反映出来的分类讨论的思想和方法,是根据几何图形点和线出现不同位置的情况逐一解决的方法。
三、引导分类讨论,提高合理解题的能力
中学数学有不少定理、法则、公式、习题,都需要分类讨论,在教授这些内容时,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性、密性。
综上所述,用现有教材,教学中着意渗透并力求帮助学生初步掌握分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。
【关键词】数学教学;分类讨论;思想方法
【中图分类号】G268【文章标识码】B【文章编号】1326-3587(2012)06-0102-01
数学家乔治• 波利亚说过:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”。随着课程改革的深入,应试教育“向”素质教育“转变的过程中,对学生的考察,不仅考查基础知识,基本技能,更为重视考查能力的培养。在中学数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。
数学分类讨论思想,贯穿于整个中学数学的全部内容中,应用分类讨论,往往能使复杂的问题简单化。分类的过程,可培养学生思考的周密性,条理性,而分类讨论,又促进学生研究问题,探索规律的能力。但是分类思想不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,不断的丰富自身的内涵。
一、渗透分类思想,养成分类的意识
每个学生在日常中都具有一定的分类知识,如人群的分类、文具的分类等,我们利用学生的这一认识基础,把生活中的分类迁移到数学中来,在教学中进行数学分类思想的渗透,挖掘教材提供的机会,把握渗透的契机。比如在“有理数”这一章的教学中,反复渗透,强化数学分类思想,使学生逐步形成数学学习中的分类的意识。并能在分类讨论的时候注意一些基本原则,如分类的对象是确定的,标准是统一的,如若不然,对象混杂,标准不一,就会出现遗漏、重复等错误。如把有理数分为:正数、负数、整数,就是犯分类标准不一的错误。在确定对象和标准之后,还要注意分清层次,不越级讨论。
二、学习分类方法,增强思维的缜密性
在教学中渗透分类思想时,应让学生了解,所谓分类就是选取适当的标准,根据对象的属性,不重复、不遗漏地划分为若干类,而后对每一子类的问题加以解答。掌握合理的分类方法,就成为解决问题的关键所在。
分类的方法常有以下几种:
1、根据某些数学概念的定义进行分类
在初中阶段的教学内容中,一些数学概念的定义,如有理数的建立,绝对值的化简,一元二次方程ax2+bx+c=0(a≠0)根的判别式,两圆的五种位置关系等等……,都渗透着分类讨论的数学思想,对涉及到分类讨论思想的概念,教师在讲授这些概念时要准确、科学,要让学生对分类讨论思想的概念有正确的认知、理解和牢固的掌握。
例1:已知a是有理数,那么 |a| 与a的关系是( )
(A)|a| > a(B)|a| < a(C)|a| = a (D|a| ≥ a
分析:绝对值概念是一种需要进行简单的分类讨论的概念
(1)当a为正有理数或零时,|a| = a;
(2)当a为负有理数,即a< 0时,|a|= -a > 0,|a| =-a> a.得正确答案:D。
但我们会发现,总有一部分学生会选C,究其原因,是没弄清绝对值这一概念,认为求一个数的绝对值,如:|5|=5;|-7。5|=7。5;……,只要去掉绝对值里面的负号.实际上,要讲清绝对值这一概念应从绝对值的几何意义说起,也就是一个数的绝对值就是数轴上表示这个数的点与原点的距离,这样学生自然而然的会得出绝对值的三种分类讨论情况。
为了使学生能牢固掌握初中数学中有关涉及到分类讨论思想的概念,有时可以采用让学生操作、分组讨论、师生一起加以归纳总结,同时增加变式训练的教学方法。
2、根据运算性质的适用范围或运算的特殊规定而分类
例2:知:(a+b)2011=-1,(a-b)2012=1,试求 a2011+b2012的值。
分析:由(a+b)2011=-1,得a+b=-1;由(a-b)2012=1,得a-b=1或-1
因此要分两种情况进行求解:a+b=-1,a-b=1或a+b=-1,a-b=-1,所以a2011+b2012 的值为1或-1。
3、根据字母的不同取值进行分类
对于具体问题,如函数、方程、不等式中的解、求代数式的值等,它们随着题中所给字母的不同取值而变化,这时要对字母的取值进行讨论。
例3:当m=________时,函数y=(m+5)x 2m_1 +7x-3(x≠0)是一个一次函数。
分析:(m+5)x 2m_1可能是一次项或常数项,也可能m+5=0,因此,分三种情况讨论:
(1)2m-1=1;m=1
(2)2m-1=0;m=
(3)m+5=0; m= -5
只有抓住了分类讨论的动因,把握住了分类的标准,才能做到分类时条理清楚、标准一致,在解答问题时就不会重复或遗漏,保证解题的准确率。
4、根据某些定理或公式的限制条件进行分类
例4:已知:等腰三角形的一条腰上的高等于该三角形某一条边的长度的一半,则其顶角为________。
分析:这个等腰三角形的高的位置可能在其内部或外部,这条高等于该三角形某一条边的长度的一半,某一条边又可分为底边或腰两种情况,所以要对高在三角形的内部或外部以及高是底边或腰的长度的一半进行分类讨论,最后得出顶角为30º、120º或150º。
正确解答此类问题要分析清楚符合条件的图形的各种可能位置,紧扣条件,分类出各种符合条件的图形.是正确解答此类分类讨论问题的关键,教学中应注意对学生画图能力和空间想象能力的培养,让学生多操作、多思考,提高学生的数学能力,同时通过对开放性问题的讨论,对条件的不确定性与结论多样性的探索、猜想,充分拓展学生的思维空间,使他们的思维更深刻、广阔、活跃。
5、根据图形的特征或相互间的关系进行分类
如三角形按角分类,有锐角三角形、直角三角形、钝角三角形;直线和圆根据直线与圆的交点个数可分为:直线与圆相离、直线与圆相切、直线与圆相交。
在证明圆周角定理时,由于圆心的位置有在角的边上、角的内部,角的外部三种不同的情况,因此分三种不同情况分别讨论证明。先证明圆心在圆周角的一条边上,这种最容易解决的情况,然后通过作过圆周角顶点的直径,利用先证明(圆心在圆周角的一条边上)的这种情况来分别解决圆心在圆周角的内部、圆心在圆周角的外部这两种情况,这是一种从定理的证明过程中反映出来的分类讨论的思想和方法,是根据几何图形点和线出现不同位置的情况逐一解决的方法。
三、引导分类讨论,提高合理解题的能力
中学数学有不少定理、法则、公式、习题,都需要分类讨论,在教授这些内容时,应不断强化学生分类讨论的意识,让学生认识到这些问题,只有通过分类讨论后,得到的结论才是完整的、正确的,如不分类讨论,就很容易出现错误。在解题教学中,通过分类讨论还有利于帮助学生概括,总结出规律性的东西,从而加强学生思维的条理性、密性。
综上所述,用现有教材,教学中着意渗透并力求帮助学生初步掌握分类的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。