论文部分内容阅读
针对多分类器集成方法产生的流量分类器在泛化能力方面的局限性,提出一种选择性集成网络流量分类框架,以满足流量分类对分类器高效的需求。基于此框架,提出一种多分类器选择性集成的网络流量分类方法 MCSE(Multiple Classifiers Selective Ensemble network traffic classification method),解决多分类器的选取问题。该方法首先利用半监督学习技术提升基分类器的精度,然后改进不一致性度量方法对分类器差异性的度量策略,降低多分类器集成方法实现网