论文部分内容阅读
近年来通信诈骗案件层出不穷,如何有效地甄别和预防通信诈骗成为一个重要的社会课题。出于用户隐私和数据安全的原因,各方原始数据信息不能直接进行交换,这给联合建模带来了诸多困难。联邦学习概念的提出能有效解决基于隐私保护的分布式安全联合建模问题,通过对比传统机器学习和联邦学习在预测精度、训练时间等维度的差别,论证联邦学习在电信运营商和公安机关的数据集上联合建模的可能性。