植物标记和非标记定量蛋白质组学技术

来源 :科学通报 | 被引量 : 0次 | 上传用户:lu471085958
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
蛋白质是细胞中重要的有机大分子,是生命活动的主要执行者.植物在受到外界信号干扰时其主要反应是通过调节细胞内蛋白质的合成和降解来恢复稳态.因而,蛋白质的定量分析有助于人们更深入地揭示植物细胞中蛋白质的动态变化及其分子功能.随着高分辨质谱技术的发展,使用质谱方法对蛋白质进行高通量定量和定性分析的蛋白质组学技术已经成为研究蛋白质功能的重要分析手段,同时也是植物生物学研究领域的热点之一.结合本课题组取得的研究成果,本文总结和概述了植物蛋白质组学定量方法的最新进展,包括非标记定量和稳定同位素标记分析方法,比较不同方法在蛋白定量的精确度、蛋白组覆盖率和稳定性等方面的优缺点,分析其在植物生物学研究中的应用范围,并对这方面的研究热点进行展望.
其他文献
手性胺是一类重要的化合物,在合成化学和生物医药领域都有着广泛的应用.近20年来,伴随着过渡金属催化不对称合成研究的发展,高效高选择性合成手性胺的方法越来越多.其中,过渡金属催化的不对称卡宾插入反应已经成为合成各种手性胺,尤其是非天然手性氨基酸的一种最为有用的方法.近年来,以铜、铑、钯为代表的过渡金属卡宾对芳香胺、酰胺、咔唑、亚胺等底物的不对称N-H插入反应研究已经取得了积极的进展,最近对脂肪胺类底物也取得了重大突破.这些结果为结构多样的手性胺合成提供了重要方法,也为过渡金属催化下芳香胺、脂肪胺的不对称转化
陆地植被生态水文过程是生态学、水文学和全球变化研究关注的前沿领域,更是生态水文学的关键理论基础之一.近年来围绕植被生态与水相互作用的研究范畴涵盖了从植物细胞到大陆尺度的几乎所有空间尺度,在不同尺度上分别在生态学和水文学各自视角取得了较大进展.但从生态水文学交叉学科角度,迫切需要整合生态学与水文学多尺度相关研究进展,系统性地归纳和总结跨尺度理论和方法进展,梳理理论前沿热点问题.为此,本文从近年来关于陆地植被生态水文过程与模拟研究进展中,系统提炼和总结了以植物水分利用与调控机制、碳氮水耦合循环过程与模拟、水循
最近几年,随着全球气候变化,全球温度升高的趋势越来越明显,特别是今年夏天美国高温天气造成多地火灾,阿联酋甚至出现70多摄氏度的极端高温天气,我国部分地区超出正常气温的天气也常有发生.因此,开发极端炎热天气环境中的绿色低碳的降温技术,对于解决气候变化所面临的各种问题,具有越来越重要的意义.个人热管理(personal ther-mal management)对人体周围微环境的高效调控能力,可以帮助人类应对全球变暖背景下的户外极端气候条件.特别是对于高热区的户外工作人员来说,开发一种能够隔热降温的可穿戴装备,
期刊
截至2020年12月24日,全球已有222个国家和地区累计报告新型冠状病毒肺炎(以下简称“新冠肺炎”)逾76858506名确诊病例,其中逾1711498人死亡(https://covid 19.who.int/)中国政府高度重视这一疫情,举国家之力,预防与治疗结合,中医与西医并重,各个行业齐心协力,医疗卫生健康通力合作,成功控制新冠肺炎疫情,抗疫成果全球瞩目.
期刊
最近十余年,由于手征有效场论和量子多体理论的发展以及计算机能力的提升,原子核的第一性原理计算取得了较大的进展.另外,由于加速器设备和探测技术的发展,实验研究接近越来越多的滴线核,观测到一些新现象、新规律.这些实验新结果为理论模型的发展提供了很好的机遇,但也带来了巨大的挑战.本文回顾我们利用第一性原理计算的原子核结构,概述我们发展的手征有效场论三体力、含共振与连续态的第一性原理Gamow量子多体理论方法,讨论滴线位置、滴线区原子核壳演化以及三体力在滴线核区的作用.
反向电渗析热机技术通过“热能-化学势能”和“化学势能-电能”两个转化过程完成电力生产,是一种新型的低品位余热利用技术.热机由发生单元及反向电渗析电池单元构成,分别对应上述两个转化过程.其中,发生单元对系统性能有显著影响,故本文从提升发生单元效率和系统性能出发,系统地综述了发生单元工质和发生方法的研究进展.通过探究溶剂和溶质特性对发生单元及系统性能的影响机理,凝练出工质筛选原则:反向电渗析热机适合于低汽化潜热、低沸点、高活度系数和高电导率的工质.调研发现,现有发生方法主要有蒸馏法、膜蒸馏法和热分解法,其中蒸
寨卡病毒起初一直被看作传统的虫媒病毒,在其发现后的60年时间里仅导致零星散发病例而一直未受重视.但在2015年南美洲暴发的寨卡疫情中发现,该病毒也能经性传播.更令人震惊的是,其感染孕妇后可导致大量的以新生儿小头畸形、脑膜炎和视力障碍为特征的先天性寨卡综合征病例,引发全球高度关注.世界卫生组织也因此宣布此次寨卡疫情为国际关注的突发公共卫生事件.疫情暴发以来,全球科学家通力合作,对先天性寨卡综合征的临床表型、动物模型和致病机制等开展了系统研究,不仅极大加深了我们对该疾病的认识,同时为研发有效的抗病毒手段提供了
新型冠状病毒肺炎(NCP)是一种由COVID-19引起的感染性呼吸道疾病.炎性风暴(也称为细胞因子风暴)在COVID-19诱导的肺损伤中起重要作用,并且是导致NCP患者病情加重甚至死亡的核心病理因素.促炎性细胞因子的过度表达和释放将导致组织损伤.研究表明,对炎性损伤的干预可能是中医药治疗NCP的重要机制之一.临床研究发现,对NCP患者进行中医药早期干预可以显著缓解体征和症状,缩短病程,降低患者进入严重期的可能性,并降低病死率.通过对《新型冠状病毒肺炎诊疗方案(试行第八版)》及已发表文献的分析发现,中医药对
半导体光催化剂是解决环境污染和能源危机的有效途径之一.石墨相氮化碳(g-C3N4)作为一种新兴的高效催化剂,具有较好的稳定性,在光催化技术中展现出巨大的工程应用潜力.然而,未经改性的g-C3N4可见光响应范围有限,并且光激发电荷载流子复合速率高,从而导致光催化活性较低.通过向g-C3N4中引入缺陷,可以扩展光响应区域,并作为电子空穴激发的活性中心,提高光催化性能.本文在实验和理论研究进展的基础上,系统地综述了缺陷g-C3N4的合成方法、缺陷位点对g-C3N4的影响以及其在水处理中的应用,如抗生素、有机农药
随着大数据、云计算和人工智能等技术为代表的计算新时代的到来,以构建人工神经网络为基础的神经拟态计算因具有低能耗、自适应学习和高并行计算等优点成为研究热点.生物分子计算伴随着合成生物学的兴起而不断发展,DNA等纳米材料不但可用于逻辑运算,还可以构造神经网络,并从训练数据中进行学习,为在分子层面实现神经拟态计算提供了可能.本文概述了神经拟态计算的基本原理,总结了DNA计算的研究进展,介绍了基于DNA计算的神经拟态计算,讨论了其发展所面临的挑战.基于生物材料构造人工神经网络是神经拟态计算迈向分子计算层面的重要一