论文部分内容阅读
针对非线性数值优化问题,提出一种在分布式环境下的基于牛顿法的并行算法。引入松弛变量,将不等式约束转换为等式约束,利用广义拉格朗日乘子将约束优化问题转换为无约束子优化问题。为了并行地求解这些子优化问题,将Newton迭代法中的Hessian矩阵进行适当的分裂,采用简单迭代法求解Newton法中的线性方程组。在理论上对该算法进行了收敛性分析。在HP rx2600集群上进行的数值实验结果表明并行效率达90%以上。