论文部分内容阅读
In this paper,we present a novel algorithm for odometry estimation based on ceiling vision.The main contribution of this algorithm is the introduction of principal direction detection that can greatly reduce error accumulation problem in most visual odometry estimation approaches.The principal direction is defned based on the fact that our ceiling is flled with artifcial vertical and horizontal lines which can be used as reference for the current robot s heading direction.The proposed approach can be operated in real-time and it performs well even with camera s disturbance.A moving low-cost RGB-D camera(Kinect),mounted on a robot,is used to continuously acquire point clouds.Iterative closest point(ICP) is the common way to estimate the current camera position by registering the currently captured point cloud to the previous one.However,its performance sufers from data association problem or it requires pre-alignment information.The performance of the proposed principal direction detection approach does not rely on data association knowledge.Using this method,two point clouds are properly pre-aligned.Hence,we can use ICP to fne-tune the transformation parameters and minimize registration error.Experimental results demonstrate the performance and stability of the proposed system under disturbance in real-time.Several indoor tests are carried out to show that the proposed visual odometry estimation method can help to signifcantly improve the accuracy of simultaneous localization and mapping(SLAM).
In this paper, we present a novel algorithm for odometry estimation based on ceiling vision. The main contribution of this algorithm is the introduction of principal direction detection that can greatly reduce error accumulation problem in most visual odometry estimation approaches.The principal direction is defned based on the fact that our ceiling is flled with artifcial vertical and horizontal lines which can be used as reference for the current robot s heading direction. The proposed approach can be operated in real-time and it performs well even with camera s disturbance. A moving low-cost RGB-D camera (Kinect), mounted on a robot, is used to continuously the current camera position by registering the currently captured point cloud to the previous one.However, its performance sufers from data association problem or it requires pre-alignment information. The performance of the proposed principal direction detect ion approach does not rely on data association knowledge. Using this method, two point clouds are properly pre-aligned .ence, we can use ICP to fne-tune the transformation parameters and minimize registration error. Experimental results demonstrate the performance and stability of the proposed system under disturbance in real-time. Sever indoor tests are carried out to show that the proposed visual odometry estimation method can help to signifcantly improve the accuracy of simultaneous localization and mapping (SLAM).