论文部分内容阅读
在FEB偏滤器物理研究的基础上,描述FEB偏滤器的结构设计与热工分析。在工程概要设计(FEB-E)阶段,偏滤器的结构从开式固板靶优化为闭式气室靶,以改善偏滤器的杂质控制和增强原子损失过程。偏滤器运行在喷气和注杂组合下的脱靶等离子体或部分脱靶等离子体模式(Partial Detached Plasma Mode)。应用改进了的NEWT1D编码模拟了喷气和注杂状态下删削层/偏滤器中等离子体及杂质的输运。着眼于杂质居留和杂质辐射,优化了喷气口的位置。偏滤器主体结构由48个气室模件环绕组成。应用COSMOS/M-HSTAR编码对偏滤器靶板进行了热工计算,结果表明以4MPa压力的氦气对靶板进行径向循环冷却是可行的。
Based on the FEB divertor physics study, the structural design and thermal analysis of the FEB divertor are described. In FEB-E, the divertor structure is optimized from an open solid target to a closed chamber target to improve divertor impurity control and enhance atom loss. The divertor operates off-target plasma or partial-detached plasma mode under the combination of jet and injection. The improved NEWT1D code simulates the transport of plasma and impurities in jetted and implanted lacustrine / divertor filters. Focusing on the dwelling of impurities and the emission of impurities, the jet port is optimized. The divertor main structure is surrounded by 48 air chamber modules. The COSMOS / M-HSTAR code was used to calculate the thermal conductivity of divertor target. The results show that it is feasible to cool the target radially with 4MPa helium gas.