高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例

来源 :国土资源遥感 | 被引量 : 0次 | 上传用户:ernest5
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高光谱遥感能同时获取地物空间影像和连续且精细的光谱信息,以图谱合一的形式更为精确地描述地物,然而高光谱影像普遍存在同物异谱和同谱异物现象,给准确地物分类带来挑战;激光雷达(light detection and ranging,LiDAR)能够获取地物拓扑信息,可用于构建地表三维模型,但单纯采用LiDAR数据无法准确识别地物。基于以上2点,开展高光谱影像和LiDAR数据的融合研究,采用形态学属性剖面进行特征提取,借助稀疏多项式逻辑回归分类器分类,探讨在不同特征组合下的融合与分类效果;并以黑河中游张掖
其他文献
为了增强遥感影像局部特征的表征能力并充分利用过完备字典的稀疏分解,提出了基于稀疏表示特征构建视觉词典的遥感影像检索新方法。首先,提取遥感训练影像库的局部不变特征,对大量的局部特征训练过完备字典并将在该字典更新下获取的稀疏表示作为图像的特征描述;然后,对稀疏表示特征构建视觉词典,并进行空间金字塔匹配,获取稀疏直方图特征;最后,使用稀疏特征训练SVM分类模型,通过分类模型输出与查询影像属于一个类别的影