论文部分内容阅读
针对异源遥感影像的成像模式、时相、分辨率等不同导致匹配困难的问题,提出了一种基于深度学习特征的匹配方法CMM-Net。首先,利用卷积神经网络提取异源遥感影像的高维特征图,根据同时满足通道最大和局部最大两种条件选取关键点,并在特征图上提取相应位置的512维描述符。在匹配阶段,完成快速最近邻搜索特征匹配后,为解决误匹配点多的问题,提出了动态自适应欧氏距离阈值和RANSAC共同约束的提纯算法,保证误匹配有效剔除的同时,最大限度保留正确匹配点。利用多组异源遥感影像对算法进行了测试,并与多种异源影像匹配算法进