论文部分内容阅读
实例回归是一种简单但有效的超分辨重建方法。然而,简单线性回归器不仅不能很好地表征低分辨与高分辨图像之间复杂的非线性关系,同时,在字典和回归器规模较大的情况下,存在内存占用过高的现象,限制了该类方法在内存受限情况下的适用性。针对这些问题,提出了一种自适应特征增强的实例回归超分辨率重建优化方法。该方法利用K-SVD字典学习算法从训练集中学习一个稀疏字典作为锚点;利用锚点邻域回归通过T次自适应增强算法得到一组强回归器;将得到强回归器进行优化编码,得到一组回归基和其相应的编码系数用于超分辨重建。为验证提出算