论文部分内容阅读
对任意正整数n,著名的F.Smarandache LCM函数SL(n)定义为最小的正整数七,使得n|[1,2…,k],其中,n|[1,2…,k]表示1,2,…,k的最小公倍数。而函数Z(n)定义为最小的正整数k,使得n≤k(k+1)/2,即Z(n)=min|k:n≤k(k+1)/2|,主要目的是利用初等及解析方法研究复合函数乩(Z(n))的均值性质,得到了一个有趣的渐近公式。