论文部分内容阅读
二进神经网络可以完备表达任意布尔函数,但对于孤立节点较多的奇偶校验问题却难以用简洁的网络结构实现。针对该问题,提出了一种实现奇偶校验等孤立节点较多的一类布尔函数的二进神经网络学习算法。该算法首先借助蚁群算法优化选择真节点及伪节点的访问顺序;其次结合几何学习算法,根据优化的节点访问顺序给出扩张分类超平面的步骤,从而减少隐层神经元的数目,同时给出了隐层神经元及输出元的表达形式;最后通过典型实例验证了该算法的有效性。