论文部分内容阅读
The Altyn Tagh Fault(ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. In the last three decades, multidisciplinary studies focusing on the timing, displacement of strikeslip and growth mechanics of the ATF have made great progresses. Most studies revealed that the ATF is a sinistral strike-slip and thrust fault, which underwent multiple episodes of activation. The fault is oriented NEE with a length of 1600 km, but the direction, timing of activity and magnitude of its extension eastward are still unclear. The AFT was predominately active during the Mesozoic and Cenozoic, in relation to the Mesozoic collision of the Cimmerian continent(Qiangtang and Lhasa block) and Cenozoic collision of India with Asia. The AFT strike-slipped with a left-lateral displacement of ca. 400 km during the Cenozoic and the displacement were bigger in the western segment and stronger in the early stage of fault activation. The slip-rates in the Quaternary were bigger in the middle segment than in the western and eastern segment. We roughly estimated the Mesozoic displacement as ca. 150-300 km. The latest paleomagnetic data showed that the clockwise vertical-axis rotation did not take place in the huge basins(the Tarim and Qaidam) at both side of ATF during the Cenozoic, but the rotation happened in the small basins along the ATF. This rotation may play an important role on accommodating the tectonic deformation and displacement of the ATF. Even if we have achieved consensus for many issues related to the ATF, some issues still need to be study deeply; such as:(a) the temporal and spatial coupling relationship between the collision of Cimmerian continent with Asia and the history of AFT in the Mesozoic and(b) the tectonic deformation history which records by the sediments of the basins within and at both side of AFT and was constrained by a high-resolution and accurate chronology such as magnetostratigraphy and paleomagnetic data.
The Altyn Tagh Fault (ATF) is the longest, lithospheric scale and strike-slip fault in East Asia. Displacement of strikeslip and growth mechanics of the ATF have made great progresses. Most studies revealed that the ATF is a sinistral strike-slip and thrust fault, which underwent multiple episodes of activation. The fault is oriented to NEE with a length of 1600 km, but the direction, timing of activity and magnitude of its extension eastward are still unclear The AFT was predominately active during the Mesozoic and Cenozoic, in relation to the Mesozoic collision of the Cimmerian continent (Qiangtang and Lhasa block) and Cenozoic collision of India with Asia. The AFT strike-slipped with a left-lateral displacement of ca. 400 km during the Cenozoic and the displacement were bigger in the western segment and stronger in the early stage of fault activation. The slip-rates in the Quaternary were bigger in the middle s egment than in the western and eastern segments. We roughly estimated the Mesozoic displacement as ca. 150-300 km. The latest paleomagnetic data showed that the clockwise vertical-axis rotation did not take place in the huge basins (the Tarim and Qaidam) at both of the side of the ATF during the Cenozoic, but the rotation happened in the small basins along the ATF. This rotation may play an important role on accommodating the tectonic deformation and displacement of the ATF. Even if we have achieved consensus for many issues related to the ATF, some issues still need to be study deeply; such as: (a) the temporal and spatial coupling relationship between the collision of Cimmerian continent with Asia and the history of AFT in Mesozoic and (b) the tectonic deformation history which records by the sediments of the basins within and at both sides of AFT and was constrained by a high-resolution and accurate chronology such as magnetostratigraphy and paleomagnetic data.