论文部分内容阅读
针对SAR图像具有斑点噪声强和目标特征差异小的特点,通过研究地物特征,提出一种基于C均值和支持向量机(Support Vector Machine)的SAR图像目标分类算法。该算法的前端在特征空间运用C均值聚类算法,有效抑制斑点噪声;后端在图像空间运用支持向量机分类器,提高分类精度。实验结果表明该分类算法能够减少SVM的特征维数,具有较好的分类性能。