论文部分内容阅读
为了获取隐藏在Intemet中的信息,基于条件随机域模型(CRF),提出了一种Web信息抽取的方法。该方法对网页样本中的每一行加注标签,确定文本特征,建立条件随机域模型,采用拟牛顿迭代方法对样本进行训练,参照学习得到的条件概率分布模型,实现网页搜索结果的抽取。与HMM模型相比,CRF模型支持网页文本的语言特征,抽取准确率高。实验结果表明,使用CRF模型的抽取准确率达到90%以上,高于使用HMM模型的抽取准确率。