论文部分内容阅读
以山东省为研究区,选择偏差校正随机森林BRF(Bias-correctedrandomforest),支持向量回归SVR(Support vector regression)和Cubist模型三种机器学习方法融合多影响因子模拟3个月时间尺度的标准化降水蒸散指数SPEI-3,以期为精确监测山东地区干旱提供一种方法。将2001-2017年23个站点的SPEI-3值作为因变量,多源遥感数据包括降水量、地表温度、蒸散发、潜在蒸散发、归一化植被指数以及土壤湿度六类7个影响因子作为自变量,自变量和因变量构成数据