论文部分内容阅读
聚类技术在知识发现方面发挥了很重要的作用,K—均值算法是聚类分析中最常用的算法,但K—均值算法必须预先选择类的数目作为先验值,即研究者需要确定数据空间内有意义类的数目.针对这个问题,本文提出一种新的聚类算法—动态迭代聚类算法,动态选取K个边缘相似度的数据对象作为最初的初始聚类点,并根据类内或类间的相似度离差程度不断地精练(合并或分割)初始类群.模拟实验结果表明,该算法提高了聚类质量,使聚类具有更高的准确性。