论文部分内容阅读
The present study was undertaken to investigate the dynamic expression of hypoxia induciblefactor-1 α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in hypoxia-induced pulmonary hypertensionof rats.It was found that mean pulmonary arterial pressure (mPAP) increased significantly after 7 d ofhypoxia.Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d ofhypoxia.HIF-1α mRNA staining was less positive in the control,hypoxia for 3 d and hypoxia for 7 d,butbegan to enhance significantly after 14 d of hypoxia,then remained stable.Expression of HIF-1 α protein inthe control was less positive,but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats.TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, butshowed no obvious changes after 3 or 7 d of hypoxia.In pulmonary tunica adventitia and tunica media,TGF-β1 protein staining was less positive in control rats,but was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d of hypoxia,and then weakening after 14 and 21 d of hypoxia.Western blottingshowed that HIF- 1α protein levels increased significantly after 7 d of hypoxia and then remained at a highlevel. TGF-β1 protein level was markedly enhanced after 3 d of hypoxia,reaching its peak after 7 d ofhypoxia,and then decreasing after 14 and 21 d of hypoxia.Linear correlation analysis showed that HIF-1αmRNA, TGF-β1 mRNA, TGF-β1 protein were positively correlated with mPAP,vessel morphometry andright ventricular hypertrophy index.TGF-β1 protein (tunica adventitia) was negatively correlated withHIF-lα mRNA.Taken together,our results suggest that changes in HIF-lα and TGF-β1 expression afterhypoxia play an important role in hypoxia-induced pulmonary hypertension of rats.
The present study was undertaken to investigate the dynamic expression of hypoxia inducible factor-1α (HIF-1α) and transforming growth factor-β1 (TGF-β1) in hypoxia-induced pulmonary hypertension of rats. It was found that mean pulmonary arterial pressure (mPAP ) increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d of hypoxia. HIF-1α mRNA staining was less positive in the control, hypoxia for 3 d and hypoxia for 7 d, butbegan to enhance after 14 d of hypoxia, then remained stable. Expression of HIF-1 α protein inthe control was less positive, but was was up-regulated in pulmonary arterial tunica intima of all hypoxic rats. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, butshowed no obvious changes after 3 or 7 d of hypoxia. Pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was less positive in control rats, but was marked ly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia, and then weakening after 14 and 21 d of hypoxia. Western blotting showed that HIF-1α protein levels increased significantly after 7 d of hypoxia and then at a high level. TGF-β1 protein level was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia, and then decreasing after 14 and 21 d of hypoxia. Linear correlation analysis showed that HIF-1α mRNA, TGF-β1 mRNA, TGF-β1 protein were positively correlated with mPAP, vessel morphometry and right ventricular hypertrophy index. TGF-β1 protein (tunica adventitia) was negatively correlated with HIF-1α mRNA. Taken together, our results suggest that changes in HIF-1α and TGF-β1 expression after hypoxia play an important role in hypoxia-induced pulmonary hypertension of rats.