论文部分内容阅读
针对行人重识别中由于姿势变化、视角改变、遮挡等引起的识别率不高的问题,提出了融合外观特征的行人重识别方法。该方法通过两个网络分支的设计,分别提取行人的全局特征和局部特征,二者融合后得到行人的外观特征。同时结合分类损失和度量学习损失,通过多任务学习策略对两个网络分支进行模型优化。此外,该模型设计了随机擦除算法,在数据集中加入噪声,增强模型的鲁棒性。实验结果表明:融合外观特征的行人重识别方法大大提高了行人重识别的准确率,在Market-1501数据集上rank1达到了92.82%、 mAP达到了80.5