论文部分内容阅读
一单元复数参考独立成分分析算法存在阈值参数难以确定的问题。通过将算法的目标优化函数巧妙地调整为期望提取信号的幅值和参考信号的近似性量度,基于机器学习原理和经典的Kuhn-Tucker条件提出一种改进的固定点算法,有效避免人为选取选择阈值参数和步长参数,降低了计算复杂度,并提高了算法收敛的稳定性和收敛速率。针对复数合成数据的仿真实验证实了所提算法的有效性。