论文部分内容阅读
【摘 要】 工程测量是一门研究各类工程建设在规划、设计、施工阶段以及运行管理全过程、全方位测量工作的科学技术,是一门应用测量学科,是多专业测绘的练台学科。测量技术对于水利水电工程的勘测、施工以及竣工验收起着至关重要的作用,然而我国目前许多水利水电工程由于采用不当的测量方法,导致测量精度低、误差大、工作效率低等问题。文章通过概括分析控制测量、变形测量、水下地形测量以及数字地形测量的技术要点,讨论各自的优缺点,并总结未来水利水电工程测量技术的发展方向,对我国水利水电工程测量技术的发展起到了一定的理论指导意义。
【关键词】 水利水电工程;测量技术;指导意义
一、引言
随着测绘新技术的发展和测绘新设备的应用,水利水电工程测量技术得到了日新月异的发展。水利水电工程测量技术发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。水利水电工程测量一般包括控制测量、地形测量、施工测量、水下测量、竣工测量和变形监测等几部分内容,由于大量采用新仪器、新方法,对经典大地测量技术、卫星定位技术(GPS)、数字摄影测量与遥感技术(RS)、GIS技术、地籍与界线测量及多种专业工程测量技术的不断融合,涵盖了线路测量、地籍与界线测量、施工测量、计量测量等方面内容,水利水电工程测量服务领域得到了不断拓宽。下面分几个方面介绍水利水电工程测量技术近几年的应用现状和发展趋势。
二、水利水电工程测量技术的现状和发展趋势
1、控制测量技术
控制测量则是一切水利水电工程测量工作的基础。随着科学技术的发展,水利水电控制测量由传统控制测量过渡到现代控制测量模式,即以GPS等空间定位技术为主、传统测绘方法为辅,快速高效、高精度确定空间点位的三维坐标。水利水电工程控制测量按水利水电工程阶段和服务内容划分为测图控制网和专用控制网两种类型,包含平面控制和高程控制两方面测量技术。水利水电工程平面控制网测量技术由传统的三角(锁)网发展为三边网、边角网、导线网、GPS网、混合网等现代控制网测量技术,近年来GPS卫星定位技术得到广泛应用:大区域测图控制网基本采用GPS控制网技术,中小区域测图平面控制网采用GPS控制网作为首级网或采用多种设备观测的混合网;专用平面控制网主要采用边角同测网,部分工程采用GPS布设首级网或直接布设为GPS混合网。水利水电工程高程控制网测量仪器从光学水准仪发展到自动安平水准仪再到数字水准仪、液体静力水准系统。观测方法从人工读数发展到自动读数纪录、自动观测,作业方式从单一的几何水准发展到测距三角高程、静力水准、GPS拟合水准等多元作业方式。数字水准仪具有测量速度快、精度高、使用方便、劳动强度轻、可实现内外业一体化等优点得到了广泛应用,布置了数量足够分布均匀的高程控制点的小型GPS网。GPS高程可达到四等水准侧量的精度;高差不大的平原、丘陵地区可采用GPS高程开展三、四跨河水准测量;若测区建立了高精度的精化大地水准面,长距离的GPS高程可达到二等水准测量的精度。
2、变形监测
变形监测又称变形测量,是对变形体进行测量,确定其空间位置及内部形态的变化特征。水利水电工程的变形监测主要包括基准网测量、工作基点测量、变形体变形监测、监测资料分析等内容,目前常用的变形监测方法主要有大地测量法、基准线测量法以及液体静力水准测量方法等。
2.1大地测量法
大地测量方法是变形监测的经典方法,可完成变形监测基准网测量、工作基点测量、变形体变形监测等工作,测量设备主要有电子水准仪、精密全站仪,测量方法包括传统的三角测量、几何水准测量、交会测量和现代的边角测量、三角高程测量等方法。大地测量方法利用常规大地测量仪器,理论方法成熟,数据可靠,观测费用较低,但观测时间长,劳动强度高,横度易受观测条件影响,自动化和智能化程度较低。
2.2基准线测量法
基准线法是水平位移变形监侧的常用方法,土石坝、重力坝、支墩坝等直线形大坝的坝体、坝基一般采用引张线法、真空激光准直法和垂线法观测,若坝体较短可采用视准线法、大气激光准直法观测;拱坝坝体坝基主要采用垂线法或大地测量法观测;近坝区岩体、高边坡、滑坡体水平位移监测主要采用大地测量法、视准线法和垂线法。
(1)视准线法的优点是所用设备普通,操作简便,费用少,但受照准精度、大气折光等多种因素影响,操作误差不易控制,精度会受到明显的影响。近年来采用较少。
(2)引张线法是一种广泛应用的大坝水平位移监测主要方法,具有设备简单、测量方便、速度快、精度高、成本低等特点。引张线读数仪由早期人工测读引张线仪发展到目前的步进电机光电跟踪式引张线仪、电容感应式引张线仪、CCD式引张线仪以及电磁感应式引张线仪,基本实现了实时自动化观测。对于短距离引张线,取消了系统中的浮托装置,提高引张线的综合精度,简化引张线的观测程序,可实现完全自动化观测。
(3)垂线包括正垂线和倒垂线两种形式,是水利水电工程水平位移变形监测的主要方法。正垂线―般采用“―线多站式”,可用于水工建筑物各高程面处的水平位移监测、挠度观测和倾斜测量等;倒垂线―般要求深入稳定的基岩内,大多用于岩层错动监测、挠度监测,或用作水平位移的基准点监测。垂线监测由传统人工读数的垂线坐标仪发展到自动化观测的遥测垂线坐标仪。
2.3液体静力水准测量方法
垂直位移监测技术主要有水准测量、三角高程测量、液体静力水准测量技术,目前发展最快的是液体静力水准测量技术。液体静力水准测量系统特别适用于坝体廊道内高程观测及高程传递,它通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。
3、水下地形测量技术
传统的水下地形测量采用一般多以经纬仪、电磁波测距仪及标尺、标杆为主要工具,用断面法或极坐标法及交会法定位,用测深杆和测深锤来采集水深数据,这种方法存在作业效率低,误差大等诸多缺点,近来已经很少被采用。近年来随着卫星定位技术的发展,DGPS、GPSRTK及CORS系統配合多波束测深仪进行水下地形测量得到了广泛的应用。DGPS(差分全球定位系统)是以某已知点作为基准点,基准点的GPS接收机连续接收卫星信号,并与已知点的位置进行比较,确定当时误差的伪距修正值,将这些修正值通过无线电台接收,用户接收机接收修正值来实时校正GPS信号,它具有全天侯、实时连续、高精度等特点。目前GPSRTK及CORS系统定位已达到厘米级的定位精度,并且能够做到实时无验潮测量。以上几种定位技术进行水下地形测量与岸上基准点交会法、极坐标法等定位技术相比。具有极大的优势,特别是较大面积的水下地形测量,可以大大缩短工作周期,减轻劳动强度。
三、结语
近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩;但东西部、单位间发展不平衡,不能满足水利水电工程建设的需要。令人可喜的是,随着计算机技术的进―步发展,以及GPS、RS、GIS、3S集成技术等测绘新技术以及数字化测绘、地面测量等先进技术设备的应用,水利水电工程测量方法和手段必将不断更新换代,服务领域也将不断拓宽。未来的水利水电工程测量技术定会向着测量数据采集和处理的自动化、实时化、数字化,测量数据管理的科学化、标准化、规格化和测量数据传播与应用的网络化、多样化、社会化的方向发展。
【关键词】 水利水电工程;测量技术;指导意义
一、引言
随着测绘新技术的发展和测绘新设备的应用,水利水电工程测量技术得到了日新月异的发展。水利水电工程测量技术发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。水利水电工程测量一般包括控制测量、地形测量、施工测量、水下测量、竣工测量和变形监测等几部分内容,由于大量采用新仪器、新方法,对经典大地测量技术、卫星定位技术(GPS)、数字摄影测量与遥感技术(RS)、GIS技术、地籍与界线测量及多种专业工程测量技术的不断融合,涵盖了线路测量、地籍与界线测量、施工测量、计量测量等方面内容,水利水电工程测量服务领域得到了不断拓宽。下面分几个方面介绍水利水电工程测量技术近几年的应用现状和发展趋势。
二、水利水电工程测量技术的现状和发展趋势
1、控制测量技术
控制测量则是一切水利水电工程测量工作的基础。随着科学技术的发展,水利水电控制测量由传统控制测量过渡到现代控制测量模式,即以GPS等空间定位技术为主、传统测绘方法为辅,快速高效、高精度确定空间点位的三维坐标。水利水电工程控制测量按水利水电工程阶段和服务内容划分为测图控制网和专用控制网两种类型,包含平面控制和高程控制两方面测量技术。水利水电工程平面控制网测量技术由传统的三角(锁)网发展为三边网、边角网、导线网、GPS网、混合网等现代控制网测量技术,近年来GPS卫星定位技术得到广泛应用:大区域测图控制网基本采用GPS控制网技术,中小区域测图平面控制网采用GPS控制网作为首级网或采用多种设备观测的混合网;专用平面控制网主要采用边角同测网,部分工程采用GPS布设首级网或直接布设为GPS混合网。水利水电工程高程控制网测量仪器从光学水准仪发展到自动安平水准仪再到数字水准仪、液体静力水准系统。观测方法从人工读数发展到自动读数纪录、自动观测,作业方式从单一的几何水准发展到测距三角高程、静力水准、GPS拟合水准等多元作业方式。数字水准仪具有测量速度快、精度高、使用方便、劳动强度轻、可实现内外业一体化等优点得到了广泛应用,布置了数量足够分布均匀的高程控制点的小型GPS网。GPS高程可达到四等水准侧量的精度;高差不大的平原、丘陵地区可采用GPS高程开展三、四跨河水准测量;若测区建立了高精度的精化大地水准面,长距离的GPS高程可达到二等水准测量的精度。
2、变形监测
变形监测又称变形测量,是对变形体进行测量,确定其空间位置及内部形态的变化特征。水利水电工程的变形监测主要包括基准网测量、工作基点测量、变形体变形监测、监测资料分析等内容,目前常用的变形监测方法主要有大地测量法、基准线测量法以及液体静力水准测量方法等。
2.1大地测量法
大地测量方法是变形监测的经典方法,可完成变形监测基准网测量、工作基点测量、变形体变形监测等工作,测量设备主要有电子水准仪、精密全站仪,测量方法包括传统的三角测量、几何水准测量、交会测量和现代的边角测量、三角高程测量等方法。大地测量方法利用常规大地测量仪器,理论方法成熟,数据可靠,观测费用较低,但观测时间长,劳动强度高,横度易受观测条件影响,自动化和智能化程度较低。
2.2基准线测量法
基准线法是水平位移变形监侧的常用方法,土石坝、重力坝、支墩坝等直线形大坝的坝体、坝基一般采用引张线法、真空激光准直法和垂线法观测,若坝体较短可采用视准线法、大气激光准直法观测;拱坝坝体坝基主要采用垂线法或大地测量法观测;近坝区岩体、高边坡、滑坡体水平位移监测主要采用大地测量法、视准线法和垂线法。
(1)视准线法的优点是所用设备普通,操作简便,费用少,但受照准精度、大气折光等多种因素影响,操作误差不易控制,精度会受到明显的影响。近年来采用较少。
(2)引张线法是一种广泛应用的大坝水平位移监测主要方法,具有设备简单、测量方便、速度快、精度高、成本低等特点。引张线读数仪由早期人工测读引张线仪发展到目前的步进电机光电跟踪式引张线仪、电容感应式引张线仪、CCD式引张线仪以及电磁感应式引张线仪,基本实现了实时自动化观测。对于短距离引张线,取消了系统中的浮托装置,提高引张线的综合精度,简化引张线的观测程序,可实现完全自动化观测。
(3)垂线包括正垂线和倒垂线两种形式,是水利水电工程水平位移变形监测的主要方法。正垂线―般采用“―线多站式”,可用于水工建筑物各高程面处的水平位移监测、挠度观测和倾斜测量等;倒垂线―般要求深入稳定的基岩内,大多用于岩层错动监测、挠度监测,或用作水平位移的基准点监测。垂线监测由传统人工读数的垂线坐标仪发展到自动化观测的遥测垂线坐标仪。
2.3液体静力水准测量方法
垂直位移监测技术主要有水准测量、三角高程测量、液体静力水准测量技术,目前发展最快的是液体静力水准测量技术。液体静力水准测量系统特别适用于坝体廊道内高程观测及高程传递,它通过各种类型的传感器测量容器的液面高度,可同时获取数十乃至数百个监测点的高程,具有高精度、遥测、自动化、可移动和持续测量等特点。两容器间的距离可达数十公里,如用于跨河与跨海峡的水准测量;通过一种压力传感器,允许两容器之间的高差从过去的数厘米达到数米。
3、水下地形测量技术
传统的水下地形测量采用一般多以经纬仪、电磁波测距仪及标尺、标杆为主要工具,用断面法或极坐标法及交会法定位,用测深杆和测深锤来采集水深数据,这种方法存在作业效率低,误差大等诸多缺点,近来已经很少被采用。近年来随着卫星定位技术的发展,DGPS、GPSRTK及CORS系統配合多波束测深仪进行水下地形测量得到了广泛的应用。DGPS(差分全球定位系统)是以某已知点作为基准点,基准点的GPS接收机连续接收卫星信号,并与已知点的位置进行比较,确定当时误差的伪距修正值,将这些修正值通过无线电台接收,用户接收机接收修正值来实时校正GPS信号,它具有全天侯、实时连续、高精度等特点。目前GPSRTK及CORS系统定位已达到厘米级的定位精度,并且能够做到实时无验潮测量。以上几种定位技术进行水下地形测量与岸上基准点交会法、极坐标法等定位技术相比。具有极大的优势,特别是较大面积的水下地形测量,可以大大缩短工作周期,减轻劳动强度。
三、结语
近年来,我国水利水电工程测量研究投入增多,发展很快,进步很大,取得了显著成绩;但东西部、单位间发展不平衡,不能满足水利水电工程建设的需要。令人可喜的是,随着计算机技术的进―步发展,以及GPS、RS、GIS、3S集成技术等测绘新技术以及数字化测绘、地面测量等先进技术设备的应用,水利水电工程测量方法和手段必将不断更新换代,服务领域也将不断拓宽。未来的水利水电工程测量技术定会向着测量数据采集和处理的自动化、实时化、数字化,测量数据管理的科学化、标准化、规格化和测量数据传播与应用的网络化、多样化、社会化的方向发展。